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Abstract

This paper aims to quantify congestion costs and estimate the scheduling utility function for

commuters. To do so, we construct California commuters’ travel-time profiles, namely, the menu

of travel times that each individual will likely face according to alternate trip timing choices. On

average, California commuters waste about 5 minutes per morning commute due to congestion.

Commuters facing a higher congestion level at the peak hour tend to avoid congestion delays by

arriving at an inconvenient edge time. We also discover that for the majority of the commuters

in our data, travel-time profiles are much flatter than our estimated schedule utility. From this

finding, we question the accuracy of the existing bottleneck models in quantifying the economic

costs of congestion and the optimal toll to ameliorate congestion.
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1 Introduction

Since Pigou (1920), scholars have sought to understand the phenomenon of traffic congestion.

The growing number of recent empirical studies, which provide more reliable estimates on the

congestion cost by using modern empirical tools and new data, confirm that the congestion cost

is substantial (e.g., Couture et al., 2018; Yang et al., 2020; Bento et al., 2021; Russo et al., 2021).

However, these works usually focus on just one element of congestion models, particularly the slope

of the road cost function, which is perhaps insufficient as a detailed policy guide toward congestion

toll that would be imposed on real-world drivers who are heterogeneous in multiple dimensions.

The recent availability of real-time traffic information—namely “big data” like Google Maps

and the development of prediction tools based on artificial intelligence, usually known as “machine

learning”—is enabling researchers to explore the problem of congestion with a more structural

framework. Among others, Akbar and Duranton (2017) and Kreindler (2020) have taken initial

steps in this direction.1 The current paper is in line with these recent papers, but ours is more

closely tied to Vickrey (1969), which has become the workhorse model for analyzing scheduling

behavior and congestion dynamics in economics (e.g., Arnott et al., 1990, 1993).

Specifically, this paper develops a simple model of trip scheduling under congestion to formally

define the congestion delays the commuter faces and identify how commuters adapt to the congestion

level they face (e.g., by adjusting route or timing choices). We then empirically quantify the model’s

key elements by utilizing real-time travel time information from Google Maps and machine learning

as a prediction tool. Our theoretical model features a salient fact that has mostly been ignored in

the classical bottleneck models—individuals live and work at different locations and therefore each

faces their own travel-time profile. Specifically, the commuter in our model chooses her optimal trip

timing to minimize commuting costs subject to the travel-time profile faced on her commuter route

as a constraint. In this situation, there may be a unique optimal trip timing on her commute route,

which, in turn, implies that the shapes of congestion dynamics faced by individuals matter in their

scheduling choices. Specifically, commuters facing a higher congestion level during the peak hour

would choose an inconvenient early or late timing to avoid an otherwise longer congestion delay—a

1There are other studies of mobility and congestion using big data, especially in developing countries (e.g., Akbar
et al., 2019; Kreindler and Miyauchi, 2020). See Selod (2021) for a literature review on the uses of big data in
transportation research more broadly. Also, for a survey of big data uses in urban economics research, see Glaeser
et al. (2018).
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finding for which we find statistically significant evidence.

The two key elements of the model are the travel-time profile faced by an individual and the

scheduling utility, which jointly reveal the commuter’s optimal arrival time choice. We empirically

quantify both. A travel-time profile is the menu of travel times that an individual commuter faces

on her commute route by alternate trip timing choices. We construct the systematic travel time

predictions by alternate arrival time intervals, that is, travel-time profiles, for a large survey sample

of commuters in California by querying travel times at Google Maps for each origin-destination pair

with random timing in each day over one and half-year. Our travel survey dataset consists of 9,127

different zip code pairs of origin and destination, which are traveled by 14,544 commuters. This

implies that a zip code pair and the corresponding travel-time profile is fairly unique to an individual

commuter.

An especially useful quantity directly drawn from each constructed travel-time profile is the

commuter’s congestion delay (or “queuing time,” borrowing from the bottleneck model’s terminol-

ogy), which is defined by the gap between the commuter’s actual travel time and the counterfactual

congestion-free travel time that would have been realized if she had traveled during times when

there was no congestion. The classical bottleneck model (Vickrey, 1969; Arnott et al., 1990, 1993)

suggests that this congestion delay is a pure social loss, and the aggregation of these losses equals

the economic inefficiency costs from congestion (see also Kim, 2019). Our constructed travel-time

profiles exhibit an average congestion delay of about 5 minutes per trip (about 20% of the sample

mean of travel time), which implies inefficiency costs borne by morning commuters in California of

about USD 6.6 billion.

The scheduling utility estimated in this paper comprises a travel time cost and schedule-delay

costs that arise from arriving earlier or later than the commuter’s ideal arrival time. The estimated

parameters in the utility function reveal commuters’ willingness to pay for a schedule delay reduction

expressed in the unit of travel times. The first step toward estimating these parameters is to assign

an ideal arrival time to each commuter, as it directly defines schedule delays as attributes in

our random utility framework. For this, we apply the machine learning method to predict the

counterfactual arrival time in the absence of queuing, learning from a group of commuters who

are plausibly assumed to arrive at their own ideal arrival times. We update our machine-learning

estimates on ideal arrival times using our theoretically grounded conjecture combined with the
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results from the previous studies to finally estimate the structural parameters in the scheduling

utility form.

Our scheduling utility estimates indicate that commuters are willing to accept about 0.5 addi-

tional minutes of schedule delay to reduce travel time by 1 minute. While the shape of the estimated

scheduling utility is similar to those presented in previous studies (Small, 1982; Kreindler, 2020), we

discover that it is much steeper than the travel-time profiles faced by commuters. Because travel

time falls too slowly to compensate for the corresponding increase in schedule delay costs, this

situation implies the tendency of commuters to choose an arrival time that is close to their ideal

arrival times. Hall (2021b) discovered this key finding that travel time climbs and decreases too

slowly relative to the indifference curve, pointing out the poor fit of the bottleneck model to travel

time data. He suggested incorporating inframarginal travelers, defined as those strictly preferring

to arrive at their ideal times, into the model to increase its fit to the data. Our solution is to

incorporate the impacts of congestion on parts of commuters’ routes other than a single point of

congestion in analyzing commuters’ scheduling choices. We also directly estimate individuals’ ideal

arrival times and find that they are quite dispersed, which explains why travel-time profiles are

flat. Our approach can make a valuable start on a long-standing weakness of practical uses of the

bottleneck model.

This paper adds to the literature estimating motorists’ scheduling preferences and the distri-

bution of preferences. In his seminal work, Small (1982) formulated the scheduling utility, the

so-called α − β − γ preference still used widely in the literature, and estimated these parameters.

Peer et al. (2015) decomposed the morning scheduling decisions of car commuters into long-run

choices of arrival routines and short-run choices of departure times subject to the routines chosen

in the long run to estimate both short- and long-run preferences.2 Kreindler (2020) estimated the

scheduling utility for drivers in Bangalore, India, using, like us, Google Maps to construct the menu

of travel times and adopting an experimental setting to explicitly estimate the parameters in terms

of a monetary unit. Hjorth et al. (2015) estimated scheduling preferences using stated preference

data incorporating non-linearity and travel time variability. Small et al. (2005) estimated the values

of travel time and reliability as well as the distribution of those values. Hall (2021a) estimated the

2Verhoef (2020) investigates whether incorporating the empirically validated difference between long- and short-
run preferences affects optimal pricing of congested roads.
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joint distribution of scheduling preference parameters as well as ideal arrival times to evaluate the

effects of an optimal time-varying tolling policy. There are also papers estimating the preferences

of public transit users using revealed preference data (Peer et al., 2016; Hörcher et al., 2017). Our

current paper uses a much larger sample of commuters to estimate the parameters more accurately

and applies a machine-learning method to predict commuters’ ideal arrival times in a scheduling

utility form that is allowed to be non-linear.

Our paper is also closely related to the recent empirical papers estimating congestion costs.

Most of these papers have focused on estimating Pigouvian deadweight loss by estimating the cost

function of trips at the road or city levels (Walters, 1961; Couture et al., 2018; Yang et al., 2020;

Russo et al., 2021). Meanwhile, Akbar and Duranton (2017) used big data to identify the demand

curve as well as the cost curve to estimate the deadweight loss from congestion more accurately.

Recent papers such as Tang (2021) and Tarduno (2021) adopted a quasi-experimental design to

estimate congestion costs. Our approach to the estimation of congestion costs is most similar to

that of Kim (2019), who also defined the congestion delay as the difference between the observed

travel time and the counterfactual free-flow travel time to measure the economic cost of congestion

defined in the standard bottleneck model (Vickrey, 1969; Arnott et al., 1990, 1993). However, unlike

Kim (2019), who used only travel survey data and thus suffered from the identification problem,

this paper observes counterfactual times at all hypothetical arrival time choices using Google Maps,

which allows us to directly identify the congestion delay for each traveler.

The rest of the paper is organized as follows. Section 2 presents a model of trip scheduling

under individual-specific travel-time profiles and develops an empirical framework for measuring

the congestion delays of individual commuters. In Section 3, we explain the data. In Section 4,

we examine the overall shapes of travel time and congestion delay profiles and quantify congestion

costs. In Section 5, we estimate the causal effect of congestion on trip scheduling. In Section

6, we estimate the structural scheduling preference parameters. In Section 7, we discuss some

implications of our findings. Finally, Section 8 concludes.

2 The Conceptual Framework
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2.1 A model of commute scheduling

This section presents a simple model of trip scheduling for a representative commuter. Every

commuter travels their own route to work simply because commuters all live and work in different

places. Each commuter therefore faces her own menu of travel times according to alternate trip

timing choices (i.e., the individual-specific travel-time profile).

The commuter’s goal is to minimize commuting cost by choosing an arrival time, subject to the

travel-time profile as a constraint. Commuting cost—with an arrival time t, denoted by C(t)—is

assumed to have the following form:

C(t) = αT (t) + βSDE(t)ω1 + γSDL(t)ω2 , (1)

where T (t) is travel time for the arrival time of t. With t∗ indicating the commuter’s ideal arrival

time, SDE ≡ max(t∗ − t, 0) is schedule delay for arrivals earlier than t∗. The third term is the

schedule-delay cost for arrivals later than t∗, with SDL ≡ max(t − t∗, 0). The parameters α, β,

and γ are the unit costs placed on each component. The commuter’s departure time is simply

d ≡ t − T (t). Hence, under the assumption that the commuter is fully informed about his travel-

time profile, the commuter effectively chooses an arrival time (t) by choosing the corresponding

departure time (d).

Note that while the exponent of T (t) is normalized at unity, the exponents placed on the

schedule delays satisfy ω1 ≥ 1 and ω2 ≥ 1. It is useful to draw an iso-cost curve on the plane of

arrival time t against travel time T (t) to appreciate the meaning of this assumption (see Figure 1).

The iso-cost curve in the figure is drawn with the assumption that ω1 and ω2 are strictly greater

than one. Because the second derivatives of the iso-cost curves are negative under ω1 > 0 and

ω2 > 0, the iso-cost curve is convex, i.e., gets steeper as t deviates more from t∗.3 In other words,

the required travel time reduction to maintain the cost from an increase in schedule delay increases

as t deviates more from t∗.

When ω1 = ω2 = 1, our cost form is the same as the customary α − β − γ, the preference of

Small (1982) also used in Arnott et al. (1990, 1993), under which the marginal rate of substitution

3Differentiate (1) with respect to t and set it at zero to have T ′(t)|C̄ = (β/α)ω1 (t∗ − t)ω1−1 for t <
t∗ (C̄ is a constant cost) and − (γ/α)ω2 (t− t∗)ω2−1 for t > t∗. The second derivative is T ′′(t)|C̄ =
− (β/α)ω1 (ω1 − 1) (t∗ − t)ω1−2 < 0 for t < t∗ and − (γ/α)ω2 (ω2 − 1) (t− t∗)ω2−2 < 0 for t > t∗.
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between schedule delays and travel time is constant at β/α before t∗ and γ/α after t∗ (see Figure

2).4

Figure 1 about here.

Let TP (t) be the travel-time profile faced by the commuter. TP (t) is the expected travel time

conditional on the commuter’s arrival time t. With t0 being the time at which congestion sets

in and t1 being the time at which congestion ends, it is assumed that TP (t) is monotonically

increasing from t0 until tpeak and decreasing from tpeak to t1. The congestion-free travel of the

commuter, TP (t0) = TP (t1) ≡ T free, is the travel time if the commuter had traveled earliest or

latest among her possible choices (an earlier arrival than t0 or a later arrival than t1 cannot be

optimal if t0 < t∗ < t1).

We can also define a congestion-delay profile, which represents the congestion dynamics faced

by the commuter. We denote it by Q(t) ≡ TP (t)−T free. The congestion delay is zero for an arrival

of either t0 or t1 (i.e., Q(t0) = Q(t1) = 0). The maximum congestion delay on the commute route

is Qpeak ≡ Q(tpeak) = TP (tpeak)− T free, where tpeak is the individual’s arrival timing for which his

travel time would be the longest.

To characterize the commuters’ choice, consider, as an example, a bell-shaped travel-time profile,

reflecting the real-world observations, which is illustrated in Figure 1. At any given arrival time

choice t, any point below the travel-time profile is not feasible. So, at the cost-minimizing arrival

time, the travel-time profile and an iso-cost curve meet while the iso-cost curve is placed at the

lowest position possible. In the figure, tc is the optimal arrival time chosen by the commuter. The

following proposition characterizes optimal arrival time choice under two particular cases: for the

proof, see Appendix A.

Proposition 1 Assume t0 < t∗ < t1 and TP (t) is twice differentiable with TP ′′(t) ≤ 0.

1. Consider the case where the iso-cost curves have more negative second derivatives than TP (t)

globally over t ∈ [t0, t1]. In this case, there exists a unique optimal arrival time, tc, between

t0 and t1. At tc, the iso-cost curve and the travel-time profile are tangent.

4Other studies use a more general formulation by imposing non-separability of arrival time and travel time. Under
that condition, the optimal trip timing depends on the trip duration (see Fosgerau and de Palma, 2012; Fosgerau
et al., 2018; Fosgerau and Kim, 2019).
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2. Consider the case where the iso-cost curves have less negative second derivatives than TP (t)

globally over t ∈ [t0, t1]. In this case, the optimal arrival time tc is t0 or t1 or t∗.

Proposition 1 suggests that each commuter has her own optimal trip timing most suitable to the

travel-time profile she faces, which is a feature departing from the classical bottleneck model,

where commuters are indifferent with alternate trip timing choices in the equilibrium. Note that

Proposition 1 does not cover all cases, since the iso-cost curve may be only locally more or less

convex than the travel-time profile. Our aim here is first to highlight the fact that the commuter

adjusts her schedule to the travel-time profile of her own, rather than fully characterizing trip

scheduling choices under all possible travel-time profiles.

Still we can discover adaptation patterns of commuters from the two cases examined in Propo-

sition 1. We will specifically show that commuters facing a steeper travel-time profile is more likely

to choose a non-peak time to avoid otherwise a long congestion delay. To see this, consider the first

case where iso-cost curves are more convex (have more negative second derivatives) than TP (t). In

this case, given that the condition for optimal choice is the equal slope of the travel-time profile to

the slope of the iso-cost curve, if the former gets larger at the optimal point, then an extra schedule

delay would decrease the travel time more than the required fall in travel time for the constant

cost, inducing a choice that is farther from t∗ and closer to t0 or t1. This implies that commuters

facing a steeper travel-time profile would tend to choose a time that is more distant from t∗ and

closer to t0 or t1, while those facing a flatter travel-time profile would tend to choose a time closer

to t∗.

Figures 2 and 3 about here.

In Figure 2, we illustrate the other case where the iso-cost curves have a smaller curvature

overall than the travel-time profile, specifically by imposing the linear iso-curves with ω1 = ω2 = 1.

In panel (a), we assume that the commuter faces a lower congestion level with a flat travel-time

profile, according to which the commuter chooses to arrive at her ideal arrival time. In panel

(b), the commuter is facing a higher congestion level. In this scenario, the commuter chooses an

inconvenient edge time largely different from t∗.

Based on these observations, the effect of the travel-time profile on scheduling choices can be

stated as follows:
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Corollary 1.1 An increase in the slope of the travel-time profile induces an earlier arrival of the

commuter if tc < t∗ and a later arrival if tc > t∗.

This corollary states that commuters adapt to the congestion dynamics they face, specifically by

arriving either earlier or later than the peak time when they face a higher level of congestion. In

Section 5, we test this hypothesis. Because the peak congestion delay on the commute route, i.e.,

Qpeak, measures the overall slope of the travel-time profile faced by the commuter, we regress the

commuter’s scheduling choice on Qpeak.

An interesting observation is that a commuter facing a higher congestion level may have a

shorter “realized” congestion delay than when facing an otherwise lower congestion level because

the commuter could avoid the long queue by arriving at a off-peak time. For example, in Figure

2, the realized congestion delay (i.e., Q(tc) = TP (tc)− T free) is shorter in panel (b) than in panel

(a), even though panel (b) illustrates a higher level of congestion with a higher Qpeak.

Figure 3 exemplifies the average travel-time profile faced by individuals and scatter plots of

arrival time and travel time. It is based on two hypothetical individuals with similar preferences but

facing different congestion levels. Based on Corollary 1.1, this scenario works from the assumption

that the commuter facing a higher congestion level chooses an edge time, denoted by tch, while

the one facing a lower congestion level chooses a peak time, tcl . In the figure, the long-dashed

curve is the average travel-time profile, which connects the average travel time values of these two

commuters by arrival time. Meanwhile, the short-dased curve in the figure connects the chosen

combination of arrival time and travel time, exemplifying scatter plots on arrival times and travel

times drawn from the data. The large difference between the two (long- and short) dashed curves

is due to the commuters’ adaptation behavior shown in Corollary 1.1.

2.2 Measuring commuters’ congestion delays

Here we provide the framework to measure individual commuters’ congestion delays (inter-

changeably used with “queuing times”) empirically. With i being the commuter subscript, the

individual-specific congestion dynamics faced by the commuter can be written as Qi(t) = TPi (t)−

T freei . With tci indicating the chosen (observed) arrival time, the individual’s “realized” queuing

time is Qi(t
c
i ) ≡ TPi (tci ) − T

free
i . Travel diary data mostly report the travel time outcome corre-
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sponding to TPi (tci ), but not the congestion-free travel time T freei , which is the counterfactual travel

time that would obtain if the traveler had alternatively chosen to travel earliest (or latest) in the

morning and encountered no queues.5 We overcome this identification challenge by constructing

each commuter’s congestion-delay profile (or queuing-time profile) using the data on hypothetical

trips queried via Google Maps.

We first construct the individual-specific travel-time profiles. Let T̂Pi (m) be the systematic

prediction of travel times for the origin and destination pair, namely the “route,” traveled by

commuter i, where m is the set of alternate arrival time intervals, with m ≡ {1, 2, 3, · · · ,M}. The

predicted travel time must be “systematic” in the sense that the prediction rules out any day-

specific unanticipated shocks, such as weather, traffic accidents, and roadwork, because commuters

would make scheduling choices based on their systematic travel-time profiles.6 To this end, we

queried travel times for a long time horizon from Google Maps and then averaged out the travel

time outcomes to construct the systematic travel-time predictions.

To construct the individual’s congestion-free travel time, i.e., T freei , we use travel time predic-

tions conducted during the lockdown policy under COVID-19, especially counterfactual trips with

pre-6:00 AM arrivals queried between March 19 and June 30, 2020. We denote this by T̂ freei . The es-

timate for the individual-specific congestion delay profile is then written as Q̂i(m) ≡ T̂Pi (m)−T̂ freei .

The “realized” delay of commuter i is obtained by evaluating it at the chosen arrival time, which

is written as

Q̂i(m
c
i ) = T̂Pi (mc

i )− T̂
free
i , (2)

where mc
i is the arrival time interval containing tci , i.e., the arrival time interval chosen by commuter

i. A small number of commuters traveling uncongested routes have a negative value for Q̂i(m
c
i ).

We assume that their congestion delay is zero.

5It is useful to see how the counterfactual framework (see Angrist and Pischke, 2009) may be adopted to define
the individual’s congestion delay alternatively. Assume that there are only two alternate trip timing choices: a time
when there is congestion and another time when there is no congestion. Let T1i be the travel time outcome if the
traveler chose to arrive at a time with congestion and T01 be the time if the traveler chose to travel at a time with
no congestion (very early or very late in the morning). The congestion delay of the commuter is T1i − T01, which is
the causal effect of trip timing on travel time (see Kim, 2019). The traveler cannot choose both, so researchers can
only observe either of them and thus cannot identify the congestion delay directly using travel diary data.

6Indeed, Peer et al. (2015) showed that commuters would form “routine” in response to their systematic travel-
time profiles and then make daily choices on trip timing.
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Another quantity estimated below is the peak queuing time of individual i, written as follows:

Q̂peaki = T̂Pi (mpeak
i )− T̂ freei (3)

which evaluates the congestion delay profile at the interval mpeak
i , in which the travel-time profile of

the individual i reaches its peak (mpeak
i contains tpeak). This expression gives the expected queuing

time conditional on arrival in the peak congestion condition of the commuter’s own route. For

commuters with a negative Q̂peaki , we again assume zero congestion.

In the empirical part, we first measure the congestion delays of a sample of commuters in

California, i.e., Q̂i(m
c
i ), and use them to calculate congestion costs in California in Section 4. We

then test the “adaptation” hypothesis of Corollary 1.1. Finally, we estimate the scheduling utility

function to draw the iso-cost curves, which, together with the travel-time profiles, would reveal

actual and ideal arrival times. As we will see, commuters in the real world have much steeper

iso-cost curves than their travel-time profiles, as illustrated in panel (a) in Figure 1. Based on this

observation, we draw a number of implications.

3 Data

The data on travelers’ scheduling choices are obtained from the 2012 California Household

Travel Survey (CHTS), which is a statewide survey conducted every 10 years. From the entire

CHTS sample, we select morning commutes made by passenger vehicles to construct the estimation

sample. We further limit our attention to morning commutes whose arrival times are between 5:00

AM and 11:15 AM. We exclude trips taken using public transit or ride sharing. We select this

sample because the choice set in this sample is relatively clear, so it is easier to estimate the

scheduling preferences. Also, as our model is closely tied to the Vickrey (1969) bottleneck model,

we can test the power of this model by focusing on this sample.

An important information we obtain from the CHTS sample is the zip codes of the home and

work locations of each commuter. The geographic centers in each zip code (for home and work)

serve as the origin and the destination when we query from Google Maps. In our final sample

of 14,544 commuters, there are 9,127 different zip code pairs (with 1,462 different zip codes for

11

Electronic copy available at: https://ssrn.com/abstract=4042423



home or work sites). So, although each zip code pair is not entirely unique to individuals (because

commuters residing at different addresses may travel to or from the same zip codes), we can say that

zip codes provide fairly detailed information on the origin and the destination of the commuters’

trips.7

For each pair of zip codes (“route”), we construct the travel-time profile (i.e., the menu of

travel times by commuter’s alternate arrival time choices). For this aim, we queried over 18 million

hypothetical trips from Google Maps in the period from January 6, 2020 to July 28, 2021, of which

about 1.3 million are in our primary analysis period from January 6 to March 18, 2020 (the date

just before the first lockdown policy enacted by the California government due to COVID-19 on

March 19). The data collected after March 18 are excluded in travel-time profile construction

due to the steep declines in traffic volume following the pandemic, but they are used to construct

congestion-free travel times.

To construct each route’s travel-time profile, we first classify the arrival times between 5:00 AM

to 11:15 AM into 16 (= M) intervals, so that each interval spans 15 minutes, to ensure that each

interval contains modes of arrivals such as 7:00 AM, 7:30 AM in the center. The first and the last

intervals (with m = 1 or m = 16) are set to be much wider, so these intervals cover 5:00 AM–6:22

AM and 9:52 AM–11:15 AM, respectively, to reflect low arrival rates and slowly changing traffic

conditions during these times.

To measure the systematic prediction of travel time by interval, i.e., T̂Pi (m) for m = 1, 2, ..., 16,

we calculate the mean of predicted travel times from trips queried during our primary analysis

period. In this way, we can rule out day-specific shocks such as accidents and weather conditions.

Once we constructed travel-time profiles for each of 9,127 different pairs of zip codes, we then

matched the profiles to individual commuters so that each has their own travel-time profile. Our

final sample consists of 14,544 commute observations.

Finally, note that we must also assume that travel-time profiles constructed between January

and March, 2020 are similar to those of 2012 when the commuters in the CHTS sample made their

scheduling choices. Google Maps queries are always real-time, so we cannot go back and estimate

the travel time that 2012 commuters would have experienced at that time. Because congestion

7For more information on how we identify routes for commuters traveling within the same zip code, see Appendix
B.
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is determined by long-term demand and supply factors, the cross-sectional variation in congestion

across zip codes should remain stable. We provide further remarks on the data construction in

Appendix B.

Table 1 about here.

Table 1 shows descriptive statistics for the key variables, such as arrival time, travel time,

and trip distance. The arrival time variable (t) is in minute and follows the decimal system with

midnight being normalized at 0. We mainly use the arrival time variable, rather than the departure

time, since the departure time suffers from a large heterogeneity in its values of commuters traveling

difference distances even when they have a similar preference. The sample mean for arrival time

(in minutes from midnight) is 478, i.e., 7:58 AM (478 = 7 × 60 + 58). The mean travel time is

25 minutes and the mean trip distance is 12 miles according to the CHTS sample. Google Maps

predicted travel times for the commuters—T̂Pi (mc
i ) from (2)—have a sample mean of 26. The mean

distance from Google Maps is a bit longer than the CHTS sample, implying that people tend to

travel distances shorter than the distance between the central locations of the zip codes reported

in the CHTS. The average speed (distance divided by travel time) from Google Maps is around 33

miles per hour.

Figure 4 provides scatter diagrams to visualize relationships between variables. From panel

(a), we find that travel times are overall constant over the entire morning time interval. However,

panel (b) shows that the speed (ratio of distance to travel time) tends to decline as the arrival

time becomes later. Panel (c) shows a monotonic relationship between trip distance and travel

time. Panel (d) shows that the speed is overall higher for longer-distance commutes in part due

to the higher congestion level for commuters residing closer to their jobs (see Couture et al., 2018;

Fosgerau and Kim, 2019).

Figures 4, 5, and 6 about here.

Figure 5 shows scatter diagram showing the fitness of the Google Maps predicted values to the

CHTS reported values. In each figure, the horizontal axis represents the CHTS reported values,

and the vertical axis plots the predicted value matched to each CHTS observation. As shown in

panel (a), Google Maps data match quite well with the survey respondents’ reported travel times,
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but there are some errors—possibly because the survey respondents’ perceptions of their travel

times are not always accurate. Panel (b) shows that the distance values in the two datasets match

better than the travel times. The correlation coefficient for the travel time variables in the two

datasets is 0.62, and for the distance variables it is 0.78.

Finally, Figure 6 illustrates the long-run evolution of travel times faced by California commuters

during the pre-COVID-19 pandemic period and subsequent periods. Each point on the curve

indicates the monthly cross-sectional average of Google Maps predicted travel times on the condition

that commuters arrive in the peak hour (7:52 AM–8:52 AM).8 As shown in Figure 6, in January

and February 2020, the average of expected travel times conditional on arrival in the peak hour is

around 28–29 minutes, but it dropped significantly when the statewide lockdown policy was enacted

on March 19, 2020. While there was some recovery in travel time during the summer seasons of

2020 and 2021, travel times remain significantly low compared to the pre-COVID-19 values.

4 Congestion Costs

4.1 Travel time and congestion delay profiles

By taking the average of travel times of counterfactual trips whose arrival times fall in each

interval m, which were queried between January 6 to March 18, 2020, we construct the individual-

specific travel-time profile denoted by T̂Pi (m). This is the travel time that individual i would face

if her arrival time belonged in the interval m. By arrival time interval m, we calculate the average

of expected travel times from the commuters in our sample, which is written as

T̂P (m) ≡
∑N

i=1 T̂
P
i (m)

N
, (4)

whereN is the size of the sample (= 14, 544). This quantity is calculated for eachm = {1, 2, 3, · · · ,M}

and plotted as the solid curve in Figure 7. Because we use the same sample to calculate the av-

erage expected travel time consistently for all intervals, we can interpret this curve as the average

travel-time profile, or the travel-time profile of the commuter facing an average congestion level.

8Specifically, we first calculate each individual’s expected travel time if she arrived in the peak hour (7:52 AM–
8:52 AM) by taking the mean of travel times from Google Maps queried trips whose arrivals belong in the peak time
interval over each month. These expected peak travel times are then averaged out from the commuters in the sample
with the size of 14,544, which yields each point on the curve.
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According to the drawn curve, a typical commuter would spend around 23 minutes if she chose to

arrive before 7:00 AM, and travel time is expected to be longer than 28 minutes if she can expect

to arrive around the peak time, 8:15 AM.

Figure 7 about here.

The overall travel-time profiles that form as a result of commuters’ arrival time choices are

much different from the profiles faced by commuters. To show this point, we calculate the mean

predicted travel time for each arrival time interval using only commuters who chose to arrive in

that interval, which is expressed as

˜̂
T (m) ≡

∑N
i=1 T̂

P
i (m|m = mc

i )

Nm(m)
, (5)

where Nm(m) is the number of commuters arriving in m. This is plotted by m and illustrated by

the dashed curve in Figure 7. For example, 1,155 commuters arrived in the interval of 7:37 AM–

7:52 AM (457 < t ≤ 472). The mean of their expected travel time is 26.7, etc. As can be seen in

the figure, the travel-time profile based only on the chosen arrivals is flatter than the profile faced

by commuters, which is attributed to the fact that commuters tend to adjust their arrival time

choices to the travel-time profiles they face. Specifically, commuters traveling a longer distance and

thus facing a long travel time at the peak would plan to arrive at a non-peak time. Because these

travelers tend to arrive early in the morning, the mean travel time for early arrivals is quite high.

Figure 7 also shows how travel-time profiles changed from the travel demand shocks from

COVID-19. In particular, we consider four sub-periods under the COVID-19 condition and draw

mean travel-time profiles for each of them using Google Maps query outcomes drawn from each sub-

period.9 As anticipated, the travel-time profile is flattest for trips occurring just after the state’s

lockdown policy. We see some recoveries of the travel times for the next sub-periods, although they

are still much flatter than under the pre-COVID-19 condition.

Now let us turn to congestion-delay profiles. We can construct each individual’s congestion-

delay profile using Google Maps by subtracting the individual-specific congestion-free travel time

from the individual’s travel-time profile, i.e., Q̂i(m) = T̂Pi (m)−T̂ freei . To measure each individual’s

9The sub-periods include March 19 – July 31 (2020), August 1 – November 30 (2020), December 1 – March 31
(2021), and April 1 – July 28 (2021).
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congestion-free travel time for each route, i.e., T̂ freei , we use trips with pre-6:22 AM arrivals using

queries conducted during the COVID-19 lockdown policy (between March 19 and June 30, 2020).

We anticipate that the lockdown policy increases remote working and thus reduces physical car

commuting, eliminating congestion for morning commute trips. As confirmed in Figure 6, expected

travel times are significantly lower during these days than before COVID-19. Furthermore, by

focusing on pre-6:22 AM arrivals, like in Kim (2019), we can safely choose only trips that have not

encountered any queues. We take the mean of travel time predictions for these trips to construct

T̂ freei for each i. Note that Q̂i(m) is the congestion-delay profile that is faced by the individual,

which is distinguished from the realized queuing time (2) (the difference comes from whether the

predicted travel time TPi (m) is interacted with the commuter’s choice to arrive in that interval).

By the arrival time interval m, the mean of Q̂i(m)’s is calculated from the commuters in the

sample, which is expressed as

Q̂(m) ≡
∑N

i=1 Q̂i(m)

N
. (6)

This expression is plotted by m as the solid curve in Figure 8. This curve describes the average

shape of the queue profiles faced by individuals. It has almost the same shape as the travel-time

profile because the congestion-delay profile for an individual is obtained directly from her travel-

time profile with only a level adjustment.

Figure 8 about here.

Now let us define the queue time profile that results from commuters’ scheduling choices. Specif-

ically, we define the mean queuing time conditional on commuters who arrived in the interval m as

the following:

˜̂
Q(m) ≡

∑N
i=1

(
Q̂i(m)|m = mc

i

)
Nm(m)

. (7)

This is plotted by m as the dashed curve in Figure 8. Notably, the dashed curve during the peak

hours between 7:00 AM and 8:30 AM is placed below the solid curve during the same interval,

implying that the mean of queuing times for trips that chose this interval is smaller than the mean

of all potential queuing times during this interval. This finding implies that commuters who would

meet a relatively longer queue tend to avoid this interval, which possibly validates Corollary 1.1.
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Figure 9 explores the heterogeneity of congestion profiles by different groups of commuters. In

panel (a), we draw the queuing-time profiles faced by individuals by distance groups. They clearly

show that commuters traveling a longer distance experience a long queue, which is seen by the

large gap in travel times between non-peak and peak time for the longer-distance groups. Panel (b)

draws congestion profiles for commuters by county of employers. As anticipated, counties known to

be highly congested, such as San Francisco and Los Angeles, have much steeper congestion profiles

than counties such as San Diego and Ventura. To further explore the difference in congestion by

county, we report the congestion ranking in Table A1, where the ranking is based on the mean of

per-mile expected queuing time during the peak hour.

Figures 9 and 10 about here.

Finally, Figure 10 again visualize the adaptation pattern of commuters. The histograms in the

figure illustrate how commuters’ scheduling choices differ by congestion level. Panel (a) illustrates

the distribution of arrival times for the relatively highly congested Los Angeles County and the

less congested Ventura County. Panel (b) illustrates the distribution of arrival times for commuters

whose trip lengths are longer or shorter than the median distance (11.78 miles). Panel (c) illustrates

the distribution of arrival times for commuters whose maximum queue on their commute routes

exceeds 30 minutes and that of the rest of the commuters. All the panels imply that commuters

subject to a higher congestion level tend to avoid the peak time.

4.2 Calculating congestion costs in California

Here, we aggregate congestion costs from our sample to estimate overall congestion costs in

the California population. We have estimated the individual’s queuing time that is “realized”

as a result of commuters’ scheduling choices (i.e., Q̂i(m
c
i ) from (2)), which is different from the

congestion-delay profile that is faced by the individual that was denoted by Q̂i(m) above. The

distribution of Q̂i(m
c
i ) is illustrated in the second column in Table 2. The third column in the same

table illustrates distribution of peak queuing times that they would face in the peak point (i.e.,

Q̂peaki ).

Table 2 about here.
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The total of realized queuing times from our sample and the average queuing time are expressed

as follows:

TQ ≡
N∑
i=1

Q̂i(m
c
i ), AQ ≡ TQ

N
, (8)

where N is the number of observations in our sample. We find that TQ for all 14,544 commuters in

our sample is 67,669 minutes, with AQ being 4.65 minutes, which is about 20% of the sample mean

of travel times. The median queuing time is 2.08, which is much shorter than the mean queuing

time because the queuing times are skewed toward longer queuing times.

We also calculate the weighted average of queuing times, using weights based on the propor-

tion of the in-sample county population to the county population in California, to deal with the

large heterogeneity in the congestion levels across counties and the different distribution of county

observations from the population distribution. Specifically, we calculate

AQW ≡
N∑
i=1

wiQ̂i(m
c
i ),

N∑
i=1

wi = 1. (9)

The weight placed for i is proportionate to the inverse of the proportion of the number of county

observations in our sample to the county population. It is to compensate commuters from counties

with fewer observations in our sample.10 We find that the weighted mean of queuing times is

about 5.14 minutes, which is a bit larger than the unweighted mean, implying an oversampling of

commuters located in relatively less congested areas in the CHTS sample.

We use the weighted mean of queuing times to calculate the total congestion costs in California.

We note that the labor force in California in July 2021 is about 18.9 million and that the percentage

of workers who commuted by private vehicle (either driving alone or carpooling) is about 85.3%,

and we conclude that about 16.1 million workers used cars for their regular commutes in that

year.11 We also assume that the number of workdays for typical workers in the US in a year is 220

days, although this number should vary by worker. We therefore multiply our estimate for queuing

time (5.14 minutes) by 16.1 million workers and 220 (days) to conclude that the total travel time

loss from congestion for the California car commuters in a year is about 303 million hours.

10Specifically, we first calculate the ratio of county sample size in our CHTS sample to the county population size
and assign a weight to each county by the inverse of this ratio. We then aggregate them all over individuals, which
we based on to assign an individual’s weight to ensure that the sum of weights is one.

11The sources of the labor force and the percentage of driving workers are the US Bureau of Labor Statistics and
the American Community Survey by the US Census Bureau.
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To finally calculate the dollar value of the time loss, we need an estimate for the value of

time (VOT). From an extensive survey, Small and Verhoef (2007) conclude that the value of time

for personal journeys varies widely by circumstances usually between 20% and 90% of the gross

wage rate and averaging around 50%. Since car drivers value time more highly under congested

conditions than under free-flow conditions, by perhaps 25% to 55% (see Small, 2012; Wardman,

2001), we conclude that 70% of the gross wage rate is most appropriate for the average VOT.

With the average hourly wage in California in 2020 of USD 31 (sourced from the Bureau of Labor

Statistics), the VOT we choose is therefore USD 21.7 per hour. It then yields a total congestion

cost of about USD 6.6 billion from morning commutes in California. An important issue of whether

our calculated congestion cost is equivalent to the economic cost of congestion remains, which we

discuss in detail below.

5 The Effect of Congestion on Scheduling Choices

The key theme of this paper is that people all have different routes (paths) to work. A natural

question would then be, how would an individual commuter respond to the condition of her specific

route? Our theoretical results in Section 2 suggests that a commuter facing a steeper travel time

profile is more likely to choose an inconvenient edge time, which has been validated in a descriptive

manner in the preceding section. In this section, we use a regression model to test this hypothesis

of commuter adaptation to routes.

We particularly aim at estimating the causal effect of congestion on trip timing choice. Corollary

1.1 suggests that commuters on a steeper travel-time profile tend to avoid the peak time. Since the

overall slope of the profile is measured by Q̂peaki , which is the peak height of the congestion-delay

profile, we regress the scheduling choice on Q̂peaki to test this hypothesis.

We estimate a simple model of binary choices between an arrival during the peak hour (7:52

AM–8:52 AM), an hour interval during which the level of congestion on average is highest) and non-

peak hours. In our sample, about 29% of commuters arrive during this peak hour. Our estimating

equation is written as

arrpeaki = δ0 + δ1Q̂
peak
i +XiΓ + εi, (10)

where arrpeaki is an indicator whose value is 1 if arrival is in the peak hour (7:52 AM–8:52 AM),
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Xi is the vector of observable worker and trip characteristics, and εi is the error term. The adaption

hypothesis implies a lower probability of choosing the peak hour if the commuter were to travel a

more congested route, under which δ1 < 0. Importantly—unlike the realized queuing time (2)—the

key explanatory variable in (10) is not a function of the arrival time itself (see (3)). So, there is no

reverse causality issue, at least not by the construction of the variables themselves.

Table 3 reports the estimation results. First, from the simple linear regression reported in

column (1), we find that the estimated coefficient, δ1, is negative, confirming that commuters

meeting a longer queue at the peak tend to arrive at a non-peak time. In column (2), we control

for the trip distance and still find a negative coefficient, implying that adaptation behavior is not

merely sorting arrivals by trip distance. In column (3), we include a set of personal characteristics

as controls. In column (4), we add the county dummies, the workers’ occupation dummies, and

the industry dummies. We find that the explanatory variable becomes stronger (yielding a more

negative δ1) when more controls are added.

Tables 3 and 4 about here.

We would like to be careful about the possibility of sorting, under which scenario our estimate

may be biased. Specifically, a higher congestion level on a route at the peak hour may mean that

the users of the route tend to have a stronger preference toward the peak hour, so a commuter’s

arrival at the peak hour may reversely explain the higher congestion level on her route. While we

try to control for factors determining commuters’ scheduling preferences, the concern of omitted

variables remains.

We use the instrumental-variable (IV) regression to address this concern. We use the mean

congestion of workers who have the same work zip code as the commuter as the IVs, specifically

the mean of Q̂peak of other workers who have the same zip code in column (5) and the mean of

per-mile Q̂peak of other workers who have the same zip code in column (6), respectively. These

variables are expected to reflect the congestion level around the workplace of the commuter, not the

scheduling preference of the commuter himself. We find that the IV estimates on δ1, reported in

columns (5)–(6), are similar to the OLS estimates. Finally, column (7) reports the Probit estimation

result, which exhibits a rather large effect of congestion on the peak-time arrival choice.

The adaptation tendency implied in our estimates is nevertheless small. For example, for an
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8-minute increase (i.e., the sample mean for Q̂peak) in the peak queuing time, there is only about

a 2% reduction in the probability of choosing the peak hour. As we shall argue later, the small

adaptation tendency does not imply that commuters are very inflexible. Rather, our scheduling

preference parameter estimates imply that commuters are moderately flexible (they are willing to

delay about 1 hour either earlier or later than the ideal time to reduce travel time by 30 minutes).

We will provide our explanation reconciling these findings below.

In Table 4, we estimate several alternative specifications to further test the adaptation hypoth-

esis. First in column (1), we use only the sample of trips with arrivals earlier than 8:52 AM to

observe the choice between an arrival at the peak (7:52 AM–8:52 AM) and an earlier arrival (than

7:52 AM), and we find a slightly stronger adaptation tendency. In column (2), we use only the

sample commutes arriving at the peak hour and later times (7:52 AM–8:52 AM vs. later than 8:52

AM) and find a similar adaptation tendency as those in Table 3.

In column (3), we use the queuing time per mile as the explanatory variable, and we again find

a statistically significant effect of congestion on the tendency to choose the peak hour. In column

(4), we modify the queuing time to the log scale and find that the elasticity of choice probability

with respect to log of travel is small. For a 100% increase in the queuing time at the peak, we find

a 1.4% lesser chance of choosing the peak time as the arrival time. Finally, in column (5), we used

the log of queuing time per mile, which exhibits a similar estimate for the elasticity.

Overall, we find a statistically significant evidence of adaptation behavior, consistent with the

hypothesis from our conceptual framework. Specifically, commuters traveling a highly congested

route during the peak hour tend to adapt to the condition by arriving at a non-peak time (i.e.,

congestion on a route causes commuters to adjust when they depart). However, the adaptation

tendency is quite weak. For example, for a 100% increase in queuing time at the peak hour, there

is only a 1–2% lower chance of choosing the peak time. For the small adaptation tendency, we need

an explanation, which we provide below after estimating the scheduling preferences in the next

section.
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6 Estimation of the Scheduling Utility Function

In this section, we estimate the schedule preferences of California commuters. The knowledge

on scheduling preferences is used to develop useful implications for tolling policy.

6.1 The utility formulation and the logit model

An individual is assumed to choose an arrival time interval among 14 intervals including m =

2, ..., 15, with each interval spanning 15 minutes. The entire choice set of arrival times covers 6:22

to 9:52 AM. We exclude the trips with intervals of m = 1 and 16 (i.e., times before 6:22 AM or

after 9:52 AM) because these travelers would have quite different preferences. We first consider a

linear form of scheduling utility. The systematic utility that the commuter i obtains by choosing

arrival time interval m in this form is written as

Vmi = −αTmi − βSDEmi − γSDLmi − ηDUM15m, (11)

where Tmi is the travel time that i would face if choosing the interval m; SDEmi = max(0, t∗i −tmi),

where t∗i is i’s ideal arrival time and tmi is the mid-point time of the interval in which i’s arrival

time belongs; and SDLmi = max(0, tmi − t∗i ). Importantly, individuals have all their own ideal

arrival times t∗i , so they face their own menu of travel times and schedule delays (these utility

components involve person ID). In the specification, we also include DUM15m, which indicates an

arrival interval that ends on the 15th or 45th minute in each hour. It controls for the traveler’s

tendency of rounding off their arrival time reports around 30 minutes, so the frequency of arrivals

ending on the 15th or 45th minute in each hour is systematically smaller.

We also estimate the quadratic utility of the following form:

Vmi = −αTmi − β1SDEmi − β2SDE
2
mi − γ1SDLmi − γ2SDL

2
mi − ηDUM15m. (12)

Below, we also estimate specifications including interaction terms of schedule delays and individual

characteristics to uncover the dependency of scheduling preferences.

With εim being the individual-specific factors determining the utility, the utility is Vmi + εmi.

In the multinomial logit framework, in which the extreme value distribution of εmi is assumed, the
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probability of choosing alternative m from choice set M by decision-maker i is given by:

Pmi =
expVmi∑M
l=1 exp(Vli)

, (13)

and the log-likelihood is written

LL ≡
N∑
i=1

log(Πymi
mi ), (14)

where ymi = 1 indicates that m is i’s chosen alternative (and ymi is otherwise 0). The maximum

likelihood estimation is used to estimate the values of the preference parameters, including α, β

(or β0 and β1 in the quadratic specification), and γ (or γ0 and γ1).

6.2 Estimating ideal arrival times

6.2.1 Machine-learning estimation

It is essential to first estimate individual-specific ideal arrival times because they define the

schedule delays as a key attribute considered in decision making. We use the machine-learning

method to estimate individuals’ ideal arrival times.

The first step is to define the “example group” as the group of commuters who would reveal

how agents would behave in the absence of congestion. Meeting no congestion on their route, these

commuters would arrive at their ideal arrival times. In the variants of the bottleneck model in

which residents are distributed over space and travel different distances, including Fosgerau and

de Palma (2012), Fosgerau et al. (2018), and Fosgerau and Kim (2019), commuters traveling the

shortest distance do not meet congestion and thus tend to arrive at their most preferred arrival

times. Motivated by this observation, we define the example group of commuters as the commuters

who have the same zip code for home and work, with a distance under 3 miles and a self-reported

trip duration of less than 10 minutes. The rest of the commuters are in the “learning group,” for

whom the ideal times should be estimated. Of the 10,487 commuters in the sample for our discrete

choice estimation, 1,134 are in the example group, and 9,353 are in the learning group.12

12Note that the sample size for discrete choice estimation is smaller than that used in the congestion costs cal-
culation. It is because we do not include commuters who arrive at m = 1 or 16, and the predicting variables
in machine-learning estimation (e.g., incomes and job categories) are missing some commuters, so their ideal time
estimates are missing.
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Figure 11 about here.

In Figure 11, the solid curve is the distribution of the arrival times of the commuters in the

example group, and the dotted curve is the distribution of arrival times of the “learning group”.

That the arrival times of the commuters in the example group are more concentrated around the

peak than those of the learning group is consistent with the theory such as Fosgerau and Kim

(2019).

The “machine” first learns how observed characteristics, such as incomes, occupation, and family

size, affect the arrival times of commuters in the example group. We find that the information on

workers’ jobs (composed of 21 industry dummies and 24 occupation dummies) has an especially

large contribution to the prediction of arrival times. Using the information learned from choices

made by commuters in the example group, the machine then predicts counterfactual arrival times

that would be chosen in the absence of queues (i.e., ideal arrival times) for the learning group.

Because we assume that commuters traveling a short enough distance would arrive at their ideal

times, we impose the average distance of the example group (1.4 miles) as the common trip distance

for the learning group in predicting their counterfactual arrival times. Then, the machine learning

effectively matches commuters between the example and non-example group based on observable

characteristics to predict ideal arrival times conditional on the short trip distance.

Figure 12 about here.

It is important to check the prediction power of the machine-learning estimates. We carry an

out-of-sample test, by which we randomly select 30% of observations in the example group and pre-

dict their arrivals using the rest in the example group (70%). Because the selected group of 30% of

commuters have both predicted and actual values of arrival times, we can then check the prediction

power. Figure 12 plots actual and predicted arrival times of the selected commuters. We find that

machine learning tends to over-estimate the arrival times for earlier arrivals and under-estimate

for later arrivals, so that the distribution of predicted ideal arrival times is systematically too con-

centrated around the center (see the dashed curve in Figure 11, which illustrates the distribution

of the machine-learning estimates for the ideal times). This outcome is probably because early or

late arrivals are not quite predicted by any systematic factors, so they are determined mainly by

individual-specific factors.
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6.2.2 Updating ideal arrival time estimates using conjecture

We seek to correct the systematic prediction errors of the machine-learning estimates found in

Figure 12. We use a theory-based conjecture for this purpose. We note that the travel-time profiles

constructed in this paper are quite flat, even for highly congested routes during rush hour. From

the travel-time profiles drawn from Google Maps, the travel time on average increases only about

7 minutes during the first half of the morning period (from an early time, say 6:00 AM, to the

peak time, 8:00 AM). Meanwhile, earlier studies estimating scheduling preferences (Small, 1982;

Kreindler, 2020) report an estimated β to α ratio of 0.3–0.5, implying a one-hour increase in travel

time corresponding to two-hour changes in arrival times. So, the travel-time profiles should be

much flatter than most commuters’ iso-cost curves.

Figure 13 about here.

This situation is described in Figure 13. In the graph, we consider five different individuals

facing a common travel-time profile. We hypothesize non-linear iso-cost curves, whose slopes are

higher than the travel-time profile. We can draw important implications from this situation. In

particular, given that the condition for an arrival at a non-preferred time (i.e., time that is largely

different from t∗i ) is a steeper travel-time profile than the iso-cost curve around t∗i (see Section 2), the

situation in Figure 13 implies this condition is hard to meet. So, commuters choosing a non-peak

time would do so mainly because these non-peak times are actually close to their preferred times

and not because they adapt to potential long delays at the peak hour. Moreover, given the large

difference in slopes between travel-time profiles and iso-cost curves, a small increase in the slope

of the travel-time profile would not be enough to induce a rescheduling of arrivals to a non-peak

time, thus explaining the weak adaptation tendency found in Section 5.

Simply put, the commuters tend to arrive at a time quite close to their ideal arrival times.

However, as machine learning does not utilize the commuters’ actual arrival times in the prediction,

the estimates on ideal arrival times would be overly different from actual arrival times. Furthermore,

the systematic over- (under) estimation of ideal times for early (late) arrivals observed in Figure

12 implies that the naive machine-learning estimates are too concentrated around the peak hour

relative to the distribution of actual arrival times.
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We, therefore, weight the machine-learning estimates and actual arrival times in the following

form to update ideal arrival time estimates and assign them to commuters:

t̂∗i ≡ πt̃∗i + (1− π)ti, (15)

where t̂∗i is the updated estimate for t∗i , t̃
∗
i is the naive machine learning estimate, ti is commuter

i’s actual arrival time, and π is a parameter with 0 < π < 1. Under the assumption that the ideal

arrival time is close to the actual arrival time, the update tends to reduce the above-mentioned

systematic prediction errors.13 Note that our weighting approach may be interpreted in the other

direction: first randomizing ideal times around the actual arrival times, and the generated errors

then being corrected by incorporating individuals’ observed characteristics using machine learning.

We are left with the choice of π. By choosing π, we effectively choose our assumption on

the distributions of finally assigned ideal times (i.e., t̂∗i ’s). If π = 1, then naive machine-learning

estimates are fully used, so the distribution of ideal times would be concentrated around the peak

hour (see the dashed curve in Figure 11). As we decrease π, since actual arrival times are more

spread out, the distribution of t̂∗i becomes more flattened. In choosing π, we first ensure that the

distribution of ideal arrival times resembles the distribution of arrival times for the example group,

while utilizing the machine-learning estimates with the use of a high π as much as we can. We

also ensure that the estimated utilities (linear and quadratic forms) fit the data well. In Figure 11,

the dash-dotted curve indicates the distribution of t̂∗i ’s with our chosen value π = 0.4. Because it

remains to be questioned how our estimates depend on π, we test with varying π values.

6.3 Scheduling utility parameters estimates

Table 5 reports the preference parameters estimated based on our chosen parameter value

π = 0.4. In the linear specification reported in column (1), we find that the estimated coefficient of

T is −0.121, and that of SDE is −0.0622, so the ratio of β to α is about 0.514. Since the coefficient

13To see this point, let ei = t∗i − t̃∗i be the error of the machine-learning estimate. Plugging this expression into
(15) to eliminate t̃∗i and rearranging terms, we can write down the prediction error from using t̂∗i as follows:

t∗i − t̂∗i = (1− π)(t∗i − ti) + πei.

From Figure 12, we can see that for earlier arrivals than ideal times with t∗i − ti > 0, ei tends to be negative, and for
late arrivals with t∗i − ti < 0, ei tends to be positive. Because 0 < π < 1 is assumed, the first and the second term
therefore would tend to cancel out, so t∗i − t̂∗i would tend to be smaller than ei.
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of SDL is −0.066, the estimated ratio γ/α is 0.545. These numbers mean that commuters are

willing to arrive early or late by an hour on average to reduce the travel time by 30 minutes. Or

equivalently, the cost of staying at work early before one’s shift starts (and the cost of being late)

is about half of the time spent in the car.

The coefficient on DUM15m is significantly negative in all specifications, implying that survey

respondents round off their arrival times by around 30-minutes intervals. In specification (2),

we include the square terms of the schedule delays. The large and significant coefficients on the

quadratic terms support the non-linearity of the utility, approximated by the quadratic form.

Table 5 about here.

In the specifications reported in columns (3)–(5), we include interaction terms to see how

commuters in one group value the utility components differently from those in the other group.

First, in column (3), we interact the utility components with the dummy for “rich” commuter,

which indicates an annual income exceeding USD 100,000. We find that the higher-income group

is a bit less sensitive to schedule-delays for an early arrivals while much more sensitive to late

arrivals. The travel time cost α is not significantly different by income group. The ratio of β to α

is higher for the low-income group while the ratio of γ to α is higher for the high-income group.

Because it feels more costly to arrive later than t∗ for the higher-income earners, they would tend

to arrive relatively earlier. In column (4), we include the interaction terms with the female dummy,

showing that women are relatively more sensitive or inflexible to schedule delays than men. In

column (5), we define a “flexible” worker dummy which indicates workers in the CHTS sample who

said that they are fairly flexible in adjusting their work schedules or that their days at the primary

workplace are fewer than five. We can anticipate that these workers are also flexible in adjusting

their scheduling within a work day. As expected, flexible workers have relatively smaller schedule

delay costs.

Table 6 about here.

Of course, our utility parameter estimates depend on π as it determines the distribution of ideal

arrival times and thus schedule delays faced by commuters. To see this dependency, we estimate the

linear utility specification with varying π and report the estimated ratios β/α and γ/α at varying
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π’s in Table 6. From the table, we can set a reasonable range for the marginal rate of substitution

between schedule delay costs and travel time costs. We first confirm that the estimated ratios β/α

and γ/α are less than 1 except for the cases where we used π = 0.1 or π = 1. For a fairly wide range

of π that is 0.3–0.8, β/α is between 0.47 and 0.62, and γ/α is between 0.49 to 0.66. The mean of

β/α from this π range is 0.51 and the mean of γ/α is 0.55, which are similar to the estimates based

on π = 0.4. It would be fair to say that the unit cost of schedule delays (β and γ) is about half of

the unit cost of travel times.

Here is a short retrospective discussion on our assumption to use equation (15), which was

made from our theory-based conjecture. A presumption behind this conjecture was that the iso-

cost curve is steeper than the travel-time profile, which may be unduly forcing the revelation of

such a situation. However, even with a higher value for π (using less of the conjecture), or even

with π = 1 (which does not use the conjecture at all), our estimated parameters still imply steeper

iso-cost curves. Thus, the conjecture itself does not drive the conclusion that the iso-cost curves

are steeper, but rather, we use it to estimate the scheduling utility parameters more accurately.

7 The Implications of the Findings and Discussion

In this section, we discuss the implications of our findings and the bottleneck modeling tradition

based on our empirical evidence. For this aim, it is necessary to first interpret the magnitudes of

our estimates. In panel (a) of Figure 14, we use our parameter estimates on the linear utility to

draw an indifference curve with the assumption that this commuter’s ideal arrival time is 8:15,

which is the peak point according to the average travel-time profile. The average travel-time profile

of Figure 7 is also placed in this figure to examine the commuter’s arrival time choice. Given β/α

(and γ/α) of about 0.5, travel time must fall by about half an hour to compensate for the increase

in schedule-delay costs arising from arrivals one hour earlier or later than the ideal time. However,

the much flatter travel-time profile means that travel time on average falls by at most 2–3 minutes

during the one-hour interval. As a result, the commuter chooses to arrive at her ideal time, which

is 8:15 AM in this example.

Figure 14 about here.
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In panel (b), we use the quadratic utility estimates to draw an indifference curve. Again, travel

time on average still falls too slowly to compensate for the increasing schedule delay costs from

arrivals later or earlier than the ideal time, under which the optimal choice is to arrive at the

ideal time. If we assume she has a different ideal arrival time, then under the convex utility, the

commuter’s chosen time may be a bit different from her ideal arrival time. However, as long as the

indifference curve is much steeper than the travel-time profile, the gap will only be small. As a

result, commuters would have a strong tendency to arrive near their ideal arrival times, although

they have moderate schedule inflexibility costs.

With the large difference between the travel-time profiles and the indifference curves observed in

Figure 14 (as well as in Hall (2021b)), the two main results from the bottleneck model, in which the

travel-time profile and the indifference curve are the same in equilibrium, should remain unresolved.

The first is on the quantification of the economic cost of congestion. We can tentatively narrow the

scope of our discussion by assuming that, like in the standard bottleneck models, the social optimum

involves no queues. In this case, if the travel-time profiles were the same as the iso-cost curves, then

the total queuing times quantifying the difference in total travel times between the social optimum

and the laissez-faire, equivalent to the inefficiency cost arising from traffic congestion, could be

measured simply by evaluating the travel-time profiles at the chosen arrival times as we have done

in this paper (see also Arnott et al., 1990, 1993; Kim, 2019). However, given the large difference

between the travel-time profiles and the indifference curves, measuring the congestion cost becomes

a complicated issue. The trade-offs implied in the two curves are different. In particular, the

travel-time profile gives the schedule delays the commuter must accept to have a zero queuing time

under the laissez-faire condition. The indifference curve gives the schedule delays she would be

willing to accept for the removal of queuing she would otherwise experience under the laissez-faire

condition. A difficult issue is which one to use when evaluating the economic benefit available from

the removal of queues (or equivalently, when evaluating the cost from the presence of queues). This

issue becomes even more complicated if social optimum involves some queues.14

The second issue is how one could design a tolling policy to achieve the social optimum in a

14Indeed, in the more traditional congestion models based on Pigou (1920), where the congestion externality
is the source of market failure, there is some congestion in thesocial optimum. Based on this model, Duranton
and Venables (2018) argue that the congestion-free time may not be the reference point for identifying the social
optimum. The Pigou and the bottleneck model also differ in the congestion technology, particularly the assumption
on the relationship between speed and traffic volume.
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decentralized setting under the large difference between the travel-time profiles and the indifference

curves. In the classical bottleneck model, because the travel-time profile and the indifference curve

are the same in equilibrium, the optimal time-varying toll schedule could be either. However, our

result suggests that neither may correspond to the socially optimal toll. Specifically, a toll resem-

bling the travel-time profile (suggested in Kim, 2019) would not induce commuters to reschedule

their trips because the maximum benefit from rescheduling is the full removal of queuing times

(7–8 minutes at most for typical commuters). This benefit would not be enough to compensate the

schedule-delay costs of several hours for those having average preferences. A utility-compensating

toll (having the shape of the indifference curve) may impose an inefficiently large toll for an arrival

around the peak time, given that arrival times are already quite dispersed.

In his recent study, Hall (2021b) confronts the same fact of travel times climbing and falling

too slowly relative to the indifference curves. For the problem of a poor fit of the bottleneck model

to his travel time data, he suggests the incorporation of “inframarginal” travelers, defined as those

having exceptionally strict preferences toward their ideal times, so they arrive at their ideal times

even with some change in the shape of the travel-time profiles. However, our finding suggests that

the majority of commuters may be “inframarginal”, so adding a smaller number of these commuters

in the model would not be enough to solve the problem.

We suggest fundamental modifications of bottleneck modeling. In particular, the bottleneck

models could incorporate the salient but ignored fact that commuters each face their own travel-

time profiles and adjust their schedules to them. We would extend this model by incorporating

the large dispersal of ideal arrival times. The dispersion of ideal times can resolve the seemingly

contradictory result, that commuters tend to arrive around their ideal times while the resulting

travel-time profiles are quite flat.15 However, it would still be challenging to fully endogenize the

heterogeneous travel-time profiles because each commuter is just one person contributing to the

formulation of an individual travel-time profile that is shaped by others who, in turn, are shaping

their own travel-time profiles. A welfare analysis to solve the above-mentioned problems of the

15Note that incorporation the heterogeneity in the ideal arrival times is not new in the literature. Even the original
bottleneck model of Vickrey (1969) assumed a uniform distribution of heterogeneous ideal arrival times (see also Small
and Verhoef, 2007, who explained the original bottleneck model with the uniformly distributed ideal times.). However,
this feature of his model has mainly been eliminated from most of the literature. Arnott et al. (1994) also considered
the preference heterogeneity of commuters in terms of ideal arrival times, but there is no heterogeneity in commuters’
travel-time profiles in that paper. Several empirical studies support large dispersion of ideal times (see Small et al.,
2005; Anas, 2015; Kreindler, 2020; Hall, 2021a).
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bottleneck model would therefore still be challenging. The current paper perhaps makes a start on

a long-standing weakness of practical uses of the bottleneck model to solve these ultimate problems.

8 Conclusion

In this paper, we developed a simple model of trip timing choices faced by commuters facing

their own travel-time profiles. We empirically quantified the model’s key elements, such as the

travel-time profiles and the scheduling utility function of car commuters in California. Using these

parameters, we quantified the total congestion costs from morning commutes in California. We also

empirically tested a hypothesis that commuters adapt to congestion dynamics by departing earlier

or later in the morning if they would face a long congestion-related delay during the peak hour

and found statistically significant evidence for it. Our estimated scheduling utility for commuters

indicates that the unit cost of schedule delays is about half of the unit cost of travel time.

Perhaps the most important discovery is the large difference between travel-time profiles and

indifference curves, from which we offer new insights on trip scheduling patterns and on the dis-

tribution of ideal arrival times. This finding raises some fundamental questions that cannot be

easily answered in the classical bottleneck models. This paper, therefore, highlights the importance

of considering the heterogeneity of location and routes when modeling congestion to solve these

problems.

One limiting assumption of our model is the exogenous nature of ideal arrival times, so a

possible extension would be to endogenize the formulation of ideal arrival times. For example, we

could distinguish the short- and the long-run ideal arrival times, with the latter determined by

the long-run preference that shapes commuters’ routines in the morning periods and determines

the short-run ideal arrival time (see Peer et al., 2015; Verhoef, 2020, for more on this idea). We

also need more research investigating the topic in the same direction as our paper, using big data

and new empirical tools to better apply economic models of traffic congestion and provide further

insights into travel behavior.
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Table 1: Summary Statistics

Obs Mean Median Min Max
(Std Dev)

Key variables
Arrival time (in minutes from midnight)a 14,544 478.19 478 300 675

(77.54)
Travel time in minutes (CHTS) 14,544 25.07 20 1 295

(18.50)
Trip distance in miles (CHTS) 14,377 12.28 8.38 0 389

(12.90)

Travel time in minutes (Google Maps)b 14,544 26.08 21.5 1 137
(17.35)

Trip distance in miles (Google Maps)c 14,544 15.30 11.78 0.3 81
(12.35)

Speed (miles per hour, Google Maps) 14,544 33.42 33.38 6.4 67
(10.45)

Quantities measuring congestion
Congestion-free travel time in minutesd 14,544 21.46 18 0.7 81

(13.90)
Congestion delay, realized at chosen arrival timing (in minutes) 14,544 4.65 2.08 0 71

(6.75)
Congestion delay per trip length (minute per mile)c 14,544 0.35 0.2 0 4.88

(0.40)

Congestion delay conditional on arrival is at the peak (Q̂peak) 14,544 8.36 4.3 0 78
(10.09)

Selected control variables
Household incomee 13,460 106.1 87.5 5 300

(68.74)
Race is white 14,544 0.73 0 1

Gender is female 14,544 0.48 0 1

Notes: a. The arrival time variable follows the decimal system and is in minutes from midnight. For example, the average
arrival of 478 means 7:58 AM. b. Each commuter’s Google Maps predicted travel time is the average of query outcomes
between January 6 and March 18, 2020, for arrivals that fall in the interval chosen by the commuter. c. Note that trip
distance may differ for given commute route (zip code pair), as Google Maps may suggest different routes. For the trip length,
we use the distance of the route suggested by Google Maps at the commuter’s chosen arrival time interval. d. Congestion-free
travel time for each commute route (zip code pair) is estimated by taking the average of travel time outcomes for arrivals
before 6:22 queried between March 19 and June 30 in 2020. e. The original income variable reported in the CHTS is
categorical, but we convert it to a continuous variable by choosing the mid-point of each interval.
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Table 2: Percentiles of Estimated Congestion Delays

Delay, realized Expected delay at the peak

5% 0.00 0.38
10% 0.17 0.82
25% 0.76 1.91
50% 2.08 4.30
75% 5.38 10.77
90% 12.81 22.42
95% 19.16 30.77
99% 32.21 46.38

Notes: The second column shows the distribution of the esti-
mated individuals’ realized delays (denoted by Q̂i(ti)). The third
column shows the distribution of the maximum queuing times
that each commuter would experience if choosing the peak time

on her route (denoted by Q̂peak
i ).
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Table 3: Testing the Adaptation Hypothesis

(1) (2) (3) (4) (5)a (6)a (7)

OLS OLS OLS OLS IV IV Probit

Dependent variable: Dummy for arrival in 7:52–8:52

Q̂peak -0.00173∗∗∗ -0.000808∗∗ -0.00143∗∗∗ -0.00265∗∗∗ -0.00258∗∗∗ -0.00241∗∗∗ -0.00838∗∗∗

(-4.98) (-2.01) (-3.39) (-5.30) (-3.02) (-2.70) (-5.03)
Distance between home and work in miles -0.00153∗∗∗ -0.00106∗∗∗ -0.000267 -0.000297 -0.000367 -0.000878

(-4.50) (-3.00) (-0.69) (-0.61) (-0.73) (-0.71)
Number of household members -0.00774∗∗ -0.000699 -0.000701 -0.000704 -0.00258

(-2.08) (-0.18) (-0.18) (-0.18) (-0.21)
Multi-worker household -0.00481 -0.00370 -0.00369 -0.00367 -0.0119

(-0.54) (-0.41) (-0.41) (-0.41) (-0.43)
Has students 0.0411∗∗∗ 0.0419∗∗∗ 0.0419∗∗∗ 0.0419∗∗∗ 0.125∗∗∗

(4.03) (4.04) (4.06) (4.06) (3.96)
Homeowner 0.00385 0.00101 0.00102 0.00103 0.00371

(0.37) (0.09) (0.10) (0.10) (0.11)
Annual family income in $1,000 0.000271∗∗∗ 0.0000815 0.0000813 0.0000809 0.000227

(4.03) (1.13) (1.13) (1.12) (1.08)
Female 0.0717∗∗∗ 0.0434∗∗∗ 0.0434∗∗∗ 0.0435∗∗∗ 0.131∗∗∗

(9.03) (4.88) (4.90) (4.91) (4.89)
College or higher degree 0.0819∗∗∗ 0.0610∗∗∗ 0.0610∗∗∗ 0.0609∗∗∗ 0.187∗∗∗

(9.67) (6.36) (6.38) (6.38) (6.49)
White 0.0179∗∗ 0.0155∗ 0.0155∗ 0.0156∗ 0.0488∗

(2.00) (1.67) (1.68) (1.70) (1.69)
Has less than 5 full work days -0.0382∗∗∗ -0.0387∗∗∗ -0.0387∗∗∗ -0.0387∗∗∗ -0.119∗∗∗

(-3.56) (-3.49) (-3.51) (-3.51) (-3.43)
Flexible worker -0.000270 -0.0171 -0.0171 -0.0170 -0.0471

(-0.02) (-1.39) (-1.39) (-1.39) (-1.26)
County-fixed effects No No No Yes Yes Yes Yes
Industry dummiesb No No No Yes Yes Yes Yes
Occupation dummiesb No No No Yes Yes Yes Yes

N 14,544 14,544 13,460 13,133 13,133 13,133 13,132
R2 0.001 0.003 0.024 0.050 0.050 0.050

Notes: Heteroskedasticity-robust t statistics are in parentheses. a. In column (5), the mean of congestion delays across commuters whose
work zip code is the same as the commuter as the instrument. In column (6), the instrument is the mean of congestion delay per mile across
commuter whose work zip code is the same as the commuter. b. The CHTS classifies 21 industry categories and 25 occupation categories.
∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

37

Electronic copy available at: https://ssrn.com/abstract=4042423



Table 4: Testing the Adaptation Hypothesis, Alternative Specifications

(1) (2) (3) (4) (5)

Early vs. Peak Late vs. peak

Dependent variable: Dummy for arrival in 7:52–8:52

Q̂peak -0.00353∗∗∗ -0.00288∗∗∗

(-5.73) (-3.49)

Q̂peak per mile -0.0252∗∗∗

(-2.76)

Log of Q̂peak -0.0136∗∗∗

(-2.89)

Log of Q̂peak per mile -0.0142∗∗∗

(-2.75)
Distance between home and work in miles -0.000934∗∗ 0.00101 -0.00151∗∗∗ -0.000785∗∗ -0.00164∗∗∗

(-2.05) (1.61) (-4.67) (-1.98) (-4.96)
Household and personal characteristicsa Yes Yes Yes Yes Yes
County fixed effects Yes Yes Yes Yes Yes
Industry fixed effects Yes Yes Yes Yes Yes
Occupation fixed effects Yes Yes Yes Yes Yes

N 10,028 6,937 13,133 12,954 12,954
R2 0.112 0.088 0.049 0.049 0.049

Notes: Heteroskedasticity-robust t statistics are in parentheses. OLS is used in all specifications. a. See Table 3 for the list of control
variables. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.

38

Electronic copy available at: https://ssrn.com/abstract=4042423



Table 5: Scheduling Utility Estimates

(1) (2) (3) (4) (5)
T -0.121∗∗∗ -0.131∗∗∗ -0.114∗∗∗ -0.115∗∗∗ -0.119∗∗∗

(0.00595) (0.00659) (0.00915) (0.00799) (0.00681)
SDE -0.0622∗∗∗ -0.0187∗∗∗ -0.0636∗∗∗ -0.0598∗∗∗ -0.0647∗∗∗

(0.000692) (0.00230) (0.00102) (0.000975) (0.000822)
SDL -0.0660∗∗∗ -0.0328∗∗∗ -0.0616∗∗∗ -0.0618∗∗∗ -0.0674∗∗∗

(0.000763) (0.00237) (0.000956) (0.00101) (0.000883)
SDE2 -0.000881∗∗∗

(0.0000488)
SDL2 -0.000605∗∗∗

(0.0000486)
T ×RICH -0.0124

(0.0121)
SDE ×RICH 0.00229∗

(0.00139)
SDL×RICH -0.0116∗∗∗

(0.00156)
T × FEMALE -0.0128

(0.0119)
SDE × FEMALE -0.00494∗∗∗

(0.00138)
SDL× FEMALE -0.00891∗∗∗

(0.00153)
T × FLEX -0.0108

(0.0140)
SDE × FLEX 0.00920∗∗∗

(0.00149)
SDL× FLEX 0.00545∗∗∗

(0.00177)
DUM15 -0.278∗∗∗ -0.277∗∗∗ -0.278∗∗∗ -0.278∗∗∗ -0.278∗∗∗

(0.0200) (0.0199) (0.0200) (0.0200) (0.0200)
Log likelihood -17779.4 -17537.3 -17746.8 -17764.7 -17760.9
β/α 0.514 0.558 (Poor) 0.520 (Male) 0.544 (Nonflex)

0.485 (Rich) 0.507 (Female) 0.428 (Flex)
γ/α 0.545 0.540 (Poor) 0.537 (Male) 0.566 (Nonflex)

0.579 (Rich) 0.553 (Female) 0.477 (Flex)

Notes: The multinomial logit is used for estimation. The choice set includes the intervals of m = 2, ..., 15,
which covers the times from 6:22 to 9:52 in the morning. In each model, the number of cases (commuters)
is 10,487, with the total number of observations in the estimation sample being 146,818 (= 14 × 10, 487).
The parameter that corrects the naive machine-learning estimates for ideal arrival times (i.e., π) is set at 0.4.
Heteroskedasticity-robust standard errors are in parentheses. ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01.
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Table 6: Effects of π on the marginal rate of substitution

π 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

β/α 1.46 0.85 0.62 0.51 0.47 0.45 0.47 0.53 0.69 1.43
γ/α 1.58 0.91 0.66 0.55 0.50 0.49 0.52 0.61 0.85 1.91

Notes: The linear specification of the scheduling utility (the model in column (1) in
Table 5) is estimated at each π value. The number of cases (commute choices) in the
estimation sample is 10,487, with the total number of observations being 146,818
(= 14× 10, 487).
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Figure 1: Trip Scheduling of the Commuter
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Figure 2: The Effect of Travel-Time Profile on Scheduling Choice
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Figure 3: Exemplified Average and Realized Travel-Time Profiles
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Notes: In this figure, we exemplify the average travel-time profile faced by commuters (long-dashed
curve) and scatter plots for arrival time and realized travel times (short-dashed curve). The figure
illustrates two different travel-time profiles (high and low congestion) and corresponding arrival time
choices (tch and tcl , respectively). There are two points on the short-dashed curve corresponding these
individuals choices. Note that while we visualize only two travel-time profiles in this figure, the full
short-dashed curve is drawn based on the assumption that there is a continuum of different individuals
facing their own travel-time profiles. As a result, as depicted in the figure, the short-dashed curve may
be outside of the range between the two travel-time profiles.
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Figure 4: Scatter Diagrams Between Variables

(a) Arrival time and travel time
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(b) Arrival time and speed
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(c) Trip distance and travel time
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(d) Trip distance and speed
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Notes: The scatter diagrams are drawn to visualize the relationships between different
variables. Travel times and trip distances predicted at the commuters’ chosen arrival time
intervals by Google Maps are used to draw scatter diagrams, while the arrival time variable
is from the CHTS. The CHTS reported travel time and trip distance exhibit similar data
patterns. The speed variable plotted in panels (b) and (d) are calculated by dividing the trip
distance (measured by Google Maps) by travel time (predicted by Google Maps) and
multiplying it by 60 to normalize into a per-hour scale.
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Figure 5: Degree of Fit of Google Maps to CHTS Data
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Notes: The scatter diagrams are drawn to evaluate the degree of fit of the Google Maps
predicted values to the CHTS reported values of the key variables. Only 5% of observations
from the entire sample are used to draw the scatter diagrams.

Figure 6: Average of Expected Travel Time in the Peak Hour by Month
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Notes: Each point plots the monthly average of expected travel times at the peak hour of the commuters in the
sample. The expected travel time of the peak hour (7:52 AM–8:52 AM) of each commuter is first calculated by
taking the mean of Google Maps travel times using trips whose arrival times are in the peak hour over the month,
which is then averaged out across commuters to give each point.
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Figure 7: Travel-Time Profiles Averaged Out Across Commuters
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Notes: The arrival time variable represented on the horizontal axis is in minutes, and time 00:00 is normalized at 0.
The solid curve (blue colored) illustrates the average of travel-time profiles of the commuters in the sample. For
this, we first construct each person’s travel-time profile (systematic travel-time prediction conditional on the
commuter’s arrival time being in each interval) by taking the mean of travel times predicted by Google Maps using
counterfactual trips whose arrival times fall in each interval over the data collection period. These are then
averaged out across commuters by arrival time interval to give each point in the solid curve. The data collection
period from Google Maps covers January 6–March 18, 2020. Each point on the long-dashed (red colored) curve
represents the average of the travel-time values calculated only using the commuters who chose that interval. The
average travel-time profiles faced by travelers are also drawn in the figure by selecting different data collection
periods to illustrate how the travel-time profiles have changed since the COVID-19 measures entered into force in
California: COVID-19 1st period covers March 19–July 31, 2020; COVID-19 2nd period covers August 1–November
30, 2020; COVID-19 3rd period covers December 1–March 31, 2021; and COVID-19 4th period covers April 1,
2021–July 28, 2021.
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Figure 8: Average Congestion-Delay Profiles Faced and Realized
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Notes: The average congestion-delay profile faced by commuters is illustrated by the solid blue curve. Each
commuter’s expected congestion-delay profile is first constructed by subtracting the estimated congestion-free travel
time from the Google Maps constructed travel-time prediction of each arrival time interval. These individuals’
expected queuing times at respective arrival time intervals are then averaged out across commuters in the sample to
construct the solid blue curve. Each point on the red dotted curve indicates the average of the expected queuing
times calculated from only commuters who chose that arrival time interval.
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Figure 9: Variation of Congestion

(a) By trip length
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(b) By county
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Notes: Panel (a) shows how congestion-delay profiles (faced by individuals) differ by trip
length. We classify commuters into five different groups sorted by trip length (the length of
each pair of zip codes is the average of distances of different routes suggested by Google
Maps by arrival time interval for the commuter) and draw the average congestion-delay
profiles of commuters in different groups. Panel (b) draws the congestion-delay profiles for
different counties. We group trips by the destination county. Of the 57 counties in
California, several large counties are selected in this figure. See Table A1 for the number of
observations used to draw each profile.
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Figure 10: Difference in the Distribution of Arrival Times
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Figure 11: Distribution of Arrival Times
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Notes: This figure shows the effect of π (weight placed on the machine-learning estimates for ideal arrival times) on the

distribution of the assigned ideal arrival times. As π is smaller, because the actual arrival times are more dispersed, the

distribution becomes more dispersed as well. We can see that with π being around 0.3, the distribution of finally assigned

ideal arrival times are closest to the distribution of arrival times of the example group (who are assumed to arrive at their

ideal arrival times).
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Figure 12: Testing Prediction Power
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Notes: In this figure, we test the prediction power. To do so, we randomly select 30% of the 1,388 observations in the example

group and predict their arrivals using the rest of the group (70%). Because the selected group’s arrival times are known as

well as predicted values, we can see the fitness. We plot scatter plots for the actual arrival times (that are assumed to be ideal

for this group) and the predicted values.

Figure 13: Conjecture
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Figure 14: Scheduling Utility and Travel-Time Profiles
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Appendices

A. Proof of Proposition 1

Proof.

1. Points above the travel-time profile are not optimal because the commuter could drive faster
at any chosen trip timing and reduce commuting cost. Points below the travel-time profile
are not feasible. Given the larger curvature of the iso-cost curves and t0 < t∗ < t1, there
is at least one point at which an iso-cost curve and the travel-time profile meet. Therefore,
it is sufficient to examine only the points on the travel-time profile. Given the curvature
difference, the iso-cost curve is steeper than the travel-time profile at t0, under which the
commuter could have a lower-positioned iso-cost curve by arriving later than t0, so t0 is not
optimal. The same reasoning is applied to show t1 is not optimal. As another possibility, if an
iso-cost curve crosses the travel-time profile at two points between t0 and t1, then neither can
be optimal because the commuter could reduce the cost by choosing a time closer to t∗. The
remaining possibility is that an iso-cost curve and the travel-time profile meet at a unique
point, at which these two curves are tangent.

2. We first rule out the possibility that the iso-cost curve is above the travel-time profile, as
it is not optimal. Since the travel-time profile is more convex, the iso-cost curve and the
travel-time profile always cross twice as long as the crossing points are not among t0, t1, or
t∗. If the two curves cross at any two points, then the commuter could shift the iso-cost curve
down by choosing a time closer to t0, t1, or t∗. The commuter does so until the iso-cost curve
touches t0 or t1, or t∗, which implies that the only possible optimal choices are t0 or t1 or t∗.

B. Further Notes on Data Construction

The first point pertains to how we deal with commuters traveling within the same zip code
because Google Maps would be unable to differentiate the locations between origin and destination
for these commuters (with their expected travel time being always zero, since Google Maps would
have the same zip code for home and work). Among the 9,127 different zip code pairs in the sample,
668 pairs have the same work and home zip code. For their home zip codes, we match the nearest
home zip codes among other commuters traveling to the same work zip code as the commuter.
Because the matched zip code is different and thus may overestimate the trip distance, we rescale
the travel time outcomes using the ratio of the CHTS reported travel time and the Google Maps
travel time predicted at the worker’s chosen trip timing.

The second point pertains to the data collection algorithm we use to work with Google Maps
data. We first set up the list of zip code pairs, and we then queried travel times for each of them
at random timings between 5:00 AM and 11:00 AM on each weekday from January 6, 2020 to July
28, 2021. We program random selections of a zip code pair queried by Google Maps because we
want to avoid the bias that may arise due to a systematically higher frequency of particular routes
chosen at particular (peak) times within travel days; we try to collect full travel-time profiles for
as many routes as possible.
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Third, we describe in detail how we construct systematic travel time expectations of individuals
by alternate arrival time interval. The notion in our framework is that each commuter would
respond to her own systematic anticipation of travel times at her alternate choices, which would
be formed from her own experiences of traveling over many days. Our goal is to estimate this
anticipated menu of travel times, not one on a specific day, because it would involve unexpected
delays due to a weather shock or accidents. This is why we collected the data over a long horizon.
However, out of the entire data collection period from January 6, 2020, to July 2021, we had to
exclude the data collected subsequent to the lockdown policy enacted in California on March 19,
2020, in response to the soaring COVID-19 cases. Figure 6 shows a significant drop in travel times
around this date and the trend has not fully recovered as of the summer of 2021. It is appropriate to
exclude the travel time outcomes during these periods, because the commuters in the CHTS sample
were subject to travel-time profiles similar to those of the pre-COVID-19 period and we want to
explore scheduling choices under the congested situation. Thus, we limit our usage of Google Maps
data to the “normal” period before March 19, 2020. We are left with 1,255,426 queried trips
from January 6 to March 18, 2020, and we use these to construct the travel-time profiles during the
congested (normal) time periods. When designing this research, we had not anticipated COVID-19,
but we were fortunate to have begun data collection before the pandemic, as we obtained enough
travel time predictions for each pair of home and work zip codes to construct the systematic travel-
time profile for each commuter. Queried trips subsequent to COVID-19 lockdown measures were
instead used to construct the congestion-free travel time for each route.

Finally, note that our final sample consists of 14,544 commute observations that have a “full”
travel-time profile with no missing values on travel times in any interval or congestion-free travel
period. This number is fewer than the 16,376 commuters in the raw CHTS sample: we lose 1,832
observations. The removed observations may have a missing value for the mean travel time in an
interval for the route, because our query is random at each timing, so these zip code pairs failed
to fill all the defined intervals. We drop the travel time menu for a route if it misses at least one
value in the intervals to ensure that commuters in our sample face the “full” menu of travel times.
Note however that the selection is effectively random, given the data collection algorithm.

C. Additional Table
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Table A1: Ranking of Congestion Level by County

County Population sizea Obs (CHTS) Mean of Q̂peaki Mean of per-mile Q̂peaki
b

San Francisco 881,549 322 17.52 1.59
Los Angeles 10,039,107 2839 14.64 1.08
Santa Clara 1,927,852 1159 13.02 0.91
Alameda 1,671,329 664 12.52 0.82
San Mateo 766,573 471 12.20 0.80
Marin 258,826 140 10.31 0.72
Orange 3,175,692 962 10.25 0.73
San Diego 3,338,330 598 9.70 0.68
Sacramento 1,552,058 359 8.74 0.65
Contra Costa 1,153,526 461 7.92 0.59
San Bernadino 2,180,085 547 6.25 0.41
Santa Cruz 273,213 188 5.65 0.53
Riverside 2,470,546 441 5.35 0.39
Monterey 434,061 365 4.88 0.50
Sonoma 494,336 305 4.36 0.38
Napa 137,744 130 4.34 0.28
Solano 447,643 226 3.74 0.25
Ventura 846,006 378 3.56 0.33
Lassen 30,573 34 3.47 0.18
Stanislaus 550,660 166 3.38 0.35
Fresno 999,101 440 3.31 0.33
Yuba 78,668 61 3.20 0.18
San Joaquin 762,148 211 3.14 0.23
Yolo 220,500 86 2.94 0.20
Placer 398,329 151 2.94 0.31
Santa Barbara 446,499 218 2.86 0.24
Kern 900,202 369 2.56 0.18
El Dorado 192,843 98 2.56 0.27
Butte 219,186 122 2.51 0.23
Humboldt 135,558 95 2.36 0.28
Merced 277,680 144 2.32 0.18
San Benito 62,808 41 2.24 0.19
Madera 157,327 78 2.17 0.16
Sutter 96,971 53 2.05 0.12
Shasta 180,080 49 1.94 0.16
Tuolumne 54,478 62 1.90 0.17
Sierra 3,005 7 1.88 0.20
Siskiyou 43,539 46 1.87 0.12
Amador 39,752 32 1.80 0.13
Nevada 99,755 51 1.79 0.14
Tulare 466,195 270 1.53 0.15
San Luis Obispo 283,111 276 1.49 0.11
Lake 64,386 44 1.41 0.12
Calaveras 45,905 29 1.37 0.08
Kings 152,940 85 1.17 0.06
Mendocino 86,749 56 1.09 0.06
Mariposa 17,203 25 1.03 0.06
Glenn 28,393 44 0.96 0.13
Tehama 65,084 40 0.92 0.08
Imperial 181,215 205 0.87 0.07
Mono 14,444 29 0.80 0.04
Colusa 21,547 30 0.72 0.04
Plumas 18,807 47 0.56 0.04
Modoc 8,841 26 0.52 0.04
Trinity 12,285 27 0.50 0.06
Del Norte 27,812 74 0.20 0.02
Inyo 18,039 68 0.08 0.00
All CA 39,512,223 14544 8.36 0.62

Notes: This table shows the levels of congestion by work site county. Commuters are sorted by
the county where their workplaces are located, and the mean of peak queuing times and the mean
of per-mile peak queuing time by the county groups are calculated. While the table sorts the
counties (the mean of peak queuing times) from the highest to the lowest, note that the ranking
based on the mean of per-mile queuing times is almost the same. a. The population size is of 2019
(Source for County Population Totals: 2010–2019, US Census Bureau). b. In calculating per-mile

Q̂peak, we use the Google Maps distance for the suggested route at each commuter’s chosen arrival
time.
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