Information Avoidance and Medical Screening: A Field Experiment in China ${ }^{1}$

Yufeng Li^{1}, Juanjuan Meng ${ }^{2}$, Changcheng Song ${ }^{3}$, and Kai Zheng ${ }^{4}$

Abstract

Are high-risk individuals more likely to avoid a disease test because of information avoidance? We conduct a field experiment to investigate this issue. We vary the price of a diabetes test (price treatments) and offer both a diabetes test and a cancer test (disease treatments) after eliciting participants' subjective beliefs about the disease risk. We find evidence that both low- and high-risk groups avoid testing, and this pattern is more salient when the test price is higher and the disease is more severe. We derive new predictions using the optimal expectation model to explain our empirical findings.

JEL Classification: D84, I12

Key Words: Anticipation Utility; Information Avoidance; Health Anxiety; Health Screening

[^0]
1. Introduction

Information is valuable in standard economic analysis because it improves decision-making. However, there are many situations in which people avoid useful information (see Golman et al. (2017) for a literature review). For instance, many empirical studies find that people tend to avoid important information regarding their health status (Lyter et al. 1987; Lerman et al., 1999; Sullivan et al., 2004; Thornton 2008; Oster et al. 2013; Ganguly and Tasoff, 2016), and this tendency can generate a huge welfare loss because of the lack of proper treatment of the disease. Even so, most studies focus on the overall information avoidance effect rather than the heterogeneous effect. Therefore, we cannot explain why some people seek or avoid health information. In particular, we do not have systematic evidence on whether high-risk individuals are more likely to avoid medical tests than low-risk individuals and how a tendency to avoid information varies with the test price and the type of disease.

We collaborate with a local hospital to conduct a randomized field experiment with approximately 1,200 individuals in rural China to answer these questions. The field experiment has two designs: price treatments and disease treatments. In the price treatments, we vary the price of a diabetes test. Individuals were randomly assigned to one of three groups: the free group (T0), the 10 RMB group (T10), or the 30 RMB group (T30). ${ }^{1}$ In the disease treatments, individuals were randomly assigned to one of two groups: the diabetes group or the cancer group. We provided the disease test for free after blood had been drawn for another free blood test (so there was no additional cost of taking the test), but varied the disease type to be tested, diabetes or cancer. In all treatments, we elicited individuals’ self-reported beliefs about their corresponding disease risk before they made their testing decisions so that we could investigate the heterogeneous effect across the disease risk.

A simple neoclassical model that assumes the best treatment can only be implemented after being formally diagnosed would predict that individuals with higher subjective beliefs about the disease risk should be more likely to take the disease test, because the test outcome allows them to take proper treatment action, and hence the information is more valuable. ${ }^{2}$ The simple neoclassical view also suggests that as test price increases, only high-risk individuals would remain in the testing group; hence the average test outcome should indicate higher probability of having the disease. However, if

[^1]information avoidance exists in the sense that both low- and high-risk groups are less likely to take the test, as price increases, only median-risk individuals should remain in the testing group. As a result, the average test outcome should remain the same, and dispersion of the test outcome should decrease.

Our cross-treatment results in the price treatments suggest that there is no significant difference in the mean value of blood glucose levels across treatments in the sample that took the diabetes test. More interestingly, distribution of the blood glucose level becomes significantly less dispersed when the test price increases. The cross-treatment distribution clearly suggests that as test price increases, both high- and low-risk individuals select out of the test. Our cross-treatment results in the disease treatments also show that the effect of the information avoidance on the high-risk group is more salient when the disease is more severe. These results are well identified because prices and the types of disease are exogenously varied on random samples of the participants.

The within-treatment analysis also suggests evidence consistent with the information avoidance intuition: The take-up rate of the disease test changes non-monotonically with the subjective risk of having diabetes in T30; i.e., those who with lower and higher subjective risk are less likely to take the diabetes test. The same pattern also appears when the cancer test is provided in the disease treatment. Further regression analysis on the alternative channels suggests that these patterns are not driven by subjective risk being correlated with knowledge of the benefits of testing, compliance costs for undergoing treatment, or financially constrain from undergoing treatment if diagnosed as having diabetes. ${ }^{3}$

To the best of our knowledge, this is the first experimental study from the field that provides both cross-treatment and within-treatment evidence that high-risk individuals may be more likely to avoid medical tests. This is the first contribution of our paper.

We also find an interesting heterogeneous effect that deepens our understanding of when we can empirically observe the tendency for high-risk individuals to avoid the test. In T0 and T10 of the price treatments, when the test price is low, we find that the probability of taking the test does not vary significantly with the subjective risk of having the disease. Similarly, when the diabetes test was

[^2]provided for free in the disease treatments, although there is weak evidence that the high-risk group tends to avoid the test, this effect is not significant. In general, the effect of the information avoidance phenomenon on the high-risk group is more salient when the test price is high and when the disease is more severe. This heterogeneous effect is the second empirical contribution of our paper. Varying the disease type to compare the information avoidance tendency is also a novel design in the related experimental literature.

To provide a unified theoretical framework to explain the above results, we apply the optimal expectation model from Oster et al. (2013) and Brunnermeier and Parker (2005) to our setting. The model assumes that individuals derive anticipatory utility from beliefs on future health status, but allows for self-manipulation on beliefs. When taking the medical test, individuals' beliefs are forced to be rational-but when avoiding the test, individuals have the flexibility to manipulate their beliefs optimally to balance the tradeoff between the optimistic belief of feeling healthy today and the cost of not taking the proper action today. We derive new model predictions that are not explicitly stated in Oster et al. (2013). First, the take-up rate is predicted to be lower for both the low- and high-risk group because without taking the test, high-risk individuals can maintain an optimistic belief, which generates positive utility. Second, the model predicts that the threshold level for high-risk individuals to avoid the test decreases with the test price. Therefore, it is more likely to observe a non-monotonic pattern empirically when the test price is high, because individuals with extremely high subjective risk may be scarce in reality. Third, when the disease becomes more serious (e.g., diabetes vs. cancer in our setting), the threshold for the high-risk group to avoid the test is also lower. Then we are more likely to observe the information avoidance among high-risk individuals when the disease is more serious, given the same distribution of risk levels.

Our third contribution is to derive new predictions from the optimal expectation model that explain why high-risk individuals tend to avoid the test, as well as why this tendency is more likely to be observed empirically when the test price is high and when the disease is severe.

We also structurally estimate the model and perform some welfare analyses under different pricing policies. We find that individuals attach about half of the weight to anticipatory utility compared to consumption utility, which leads to some degree of information avoidance. Simulating the testing decisions under both the neoclassical model and the anticipatory utility model, we find that
the traditional view underestimates the welfare-improving effect of subsidies or mandate policies, because they are more effective when there is information avoidance. The most effective policy in our simulation is to provide subsidies to those who tend to avoid the test under anticipatory utility but not under neoclassical model. Our model predicts that such group is with median-low and median-high risk. This implies a new direction for effective policy design: provide targeted subsidy to people with median-low and median-high risk who are more likely to avoid information due to anticipatory utility

This paper is related to both empirical and theoretical studies on information avoidance. Golman et al. (2017) provide an excellent review of this literature. Many empirical studies find that people tend to avoid important information regarding their health status (Lyter et al. 1987; Lerman et al., 1999; Sullivan et al., 2004; Thornton 2008; Oster et al. 2013; Ganguly and Tasoff, 2016). For instance, participants in Thornton's (2008) study generally avoided learning their HIV test outcomes, but even small incentives reduced the avoidance rate significantly. Most previous studies focus on the overall information avoidance effect; only a few investigate the heterogeneous effect across the probability of having the disease. The latter group produces mixed results. Some find that people with higher risk of having cancer tend to delay a visit to the doctor (Caplan, 1995; Meechan et al., 2002; Persoskie et al., 2014). However, using elicited subjective beliefs, Oster et al. (2013) find that individuals with higher subjective belief about disease risk were more likely to pursue being tested for Huntington's disease, and people were generally overly optimistic about the risk of having such disease. Okeke et al. (2013) conducted a randomized trial in Nigeria with varying prices for cervical cancer screening. Despite the lack of statistics significance, they found that high-risk subjects (for both subjective and objective risk) tended to accept a higher test price in general. To our best knowledge, our paper is the first field experiment to find that individuals with high subjective belief about the disease risk tend to avoid testing. We also identify some conditions from both the empirical and theoretical work under which this effect is more likely to appear, which helps reconcile the mixed results in the literature.

In terms of cross-disease comparison, Ganguly and Tasoff (2016) find that more people are willing to forgo a $\$ 10$ payment to avoid learning the results of the herpes simplex virus 2 (HSV-2) test than an HSV virus 1 (HSV-1) test, where HSV-2 is viewed as a more serious condition. Our comparison of diabetes and cancer shows a similar result but the disease type is exogenously varied in the field experiment.

Three types of belief-based utility models can help to explain information avoidance in a medical
testing context: the model of anxiety (Caplin and Leahy, 2001; Kőszegi, 2003; Eliaz and Spliegler, 2006; Epstein, 2008), the model of optimal expectations (Brunnermeier and Parker, 2005; Oster et al., 2013), and the model of news utility (Kőszegi and Rabin, 2009; Kőszegi 2010). Both the model of anxiety and the model of optimal expectation assume that individuals derive anticipatory utility from beliefs about future health status. ${ }^{4}$ However, the model of anxiety also maintains the assumption of rational beliefs. Individuals avoid the test because it increases the uncertainty of beliefs, which increases anxiety when the utility over beliefs is concave. This type of model predicts that the tendency to avoid information is independent of prior probability of having the disease (Eliaz and Spliegler, 2006). The optimal expectations model allows for self-manipulation on beliefs. This model can be distinguished from the model of anxiety's predictions in two respects: whether there is overoptimism and whether high-risk individuals are more likely to avoid the test. Oster et al. (2013) provide empirical evidence to distinguish the two models based on their documentation of overoptimism, while our study distinguishes the two from the perspective of information avoidance among high-risk individuals. The model of news utility assumes that utility depends not on the absolute level of beliefs, but the change in beliefs (e.g., Kőszegi and Rabin, 2009). In this case, individuals with a median level of subjective belief about disease risk should be the most unwilling to take the test, because information shocks from taking the test are more severe.

The paper proceeds as follows. Section 2 introduces the experimental design for the field study, and Section 3 presents empirical results. Section 4 builds a theoretical model of information avoidance based on anticipatory utility to explain our findings. Section 5 concludes.

2. Experimental Design

2.1. Background

As of 2016, 422 million people have diabetes worldwide, up from 108 million in $1980 .{ }^{5}$ The prevalence of diabetes is 8.5% among adults - nearly double the rate of 4.7% in 1980 (WHO, 2016). Approximately 673 billion USD were spent on diabetes, which accounts for about 12% of global health expenditure (International Diabetes Federation, 2015). Many people remain undiagnosed, because often there are few symptoms during the early years of type 2 diabetes. About 46.5% of people with

[^3]diabetes worldwide do not know they have the disease (International Diabetes Federation, 2015). The number is higher in Asian countries. For example, 9.7% of the adult population in China has diabetes, and 60.7% of Chinese with diabetes do not know they have the disease (Yang et al., 2010). This lack of knowledge generates a huge welfare cost; diabetes mellitus caused 1.6 million deaths in 2015, making it the sixth leading cause of death (WHO, 2017).

Screening is potentially an important strategy to mitigate the effects of diabetes, since early detection and prompt treatment may reduce the burden of diabetes and its complications. Screening typically involves drawing venous blood to measure blood sugar and glycated hemoglobin. We offer the following types of blood tests for diabetes: random plasma glucose (RPG), fasting plasma glucose (FPG), and oral glucose tolerance (OGTT). The RPG consists of a blood check at any time of day that does not require fasting, but is also not very accurate for diagnosing diabetes compared to the other two. The FPG requires fasting for at least 8 hours before the test. The two-hour OGTT, which checks blood glucose levels before and two hours after drinking a solution of glucose and water, reveals how the individual processes glucose. ${ }^{6}$

We also included one test related to cancer in our study. The carcinoembryonic antigen (CEA) blood test is commonly used to follow patients with known cancers. It can also be used as a tumor marker, especially for cancers of the gastrointestinal tract. A rising CEA level is correlated with progression or recurrence of the disease. Note that the CEA by itself is not specific enough to substantiate a recurrence of a cancer, and further tests are required for confirmation. Details of these tests are provided in Appendix 1.

2.2. Experimental Design

We collaborate with a large local hospital in one rural county in Beijing, China, to study demand for these disease tests. The collaboration offers two advantages. First, doctors and nurses from the hospital can provide medical knowledge, medical tests, and related services. Second, the hospital can help us earn the trust of residents, which is necessary in order to conduct the study. In 2014, 10 villages were randomly selected in the county. We first collected administrative data-name, gender, birthdate,

[^4]and address-for all individuals in the sample villages from the local government. We asked village leaders to instruct all individuals who did not have diabetes to come to the village office on the day of the study, which allowed us to survey the full sample of eligible individuals. Upon arrival at the study site, we asked households to complete a survey in a separate room. We provided a free basic medical examination for all individuals after the survey, which included height, weight, and blood pressure.

We designed two experiments to investigate what determines demand for diabetes screening: a price treatment and a disease treatment. We conducted the price treatment in five villages and the disease treatment in the other five villages. Randomization is at the individual level to increase the power. Figure 1 presents the experimental design. In the price treatment, we varied the price of the diabetes test. When individuals arrived for the study, enumerators first conducted surveys. Individuals were randomly assigned to one of three groups after completing the survey: the free group (T0), the 10 RMB group (T10), or the 30 RMB group (T30). Individuals chose one of three sealed envelopes offered by enumerators, and the voucher inside the envelope stated the price they would have to pay to receive the diabetes test. The actual price to conduct the diabetes test in the hospital used for the study is 30 RMB. We then asked whether they would like to take a diabetes test. If they chose to do the test, nurses from the local hospital drew their blood after the physical examination. We choose diabetes tests that use venous blood to measure blood sugar and glycated hemoglobin that requires laboratory analysis and produces results several days later. If individuals had eaten breakfast before taking the blood test, we drew blood once and measured the random blood sugar level. If they had fasted before the blood test, we conducted the fasting blood sugar test or the oral glucose tolerance test, depending on the individual's choice.
[Figure 1]
In the disease treatment, we varied the disease being tested after blood had been drawn. Village leaders informed all individuals that there would be a free blood test to obtain basic blood counts and that they should fast before coming to the study. When individuals arrived, nurses first drew venous blood from all individuals and enumerators conducted surveys. Individuals were randomly assigned to one of two groups: the diabetes group or the cancer group. Randomization was conducted by the researcher using a computer, and individuals were not aware of their assignment. In the diabetes group, after taking the blood and conducting the survey we asked whether participants would like to use the
blood that had been drawn for an additional free diabetes test (fasting blood sugar). The procedure was the same for the cancer group, except we asked whether they would like to have an additional free test for cancer risk (carcinoembryonic antigen). ${ }^{7}$ Participants in both groups were told that if they chose to have the additional test, nurses would send their test results via text message several days later.

We are interested in (1) what is the impact of different treatments on take-up of the screening test; and (2) who selected to be screened under different treatments. The key information necessary to understand question (2) is diabetes risk, which can be determined by both objective and subjective measures. The subjective measure is self-reported beliefs about diabetes risk and cancer risk. We asked participants the following question: "What do you think is the probability that you have diabetes/cancer?" To indicate their answers, participants were given 10 small paper balls and asked to distribute them across two areas: (1) No diabetes/cancer and (2) have diabetes/cancer. If participants put 2 paper balls into (2) and 8 paper balls into (1), the perceived probability that they have diabetes/cancer is around 20%. Objective measures include test outcomes (which are only available for those who take the test). ${ }^{8}$

The survey also includes the individual's socioeconomic background, lifestyle, knowledge about diabetes, risk attitudes, time preference, and information avoidance. The preference measures are hypothetical. Risk attitudes were elicited by asking sample households to choose between increasing amounts of certain money (riskless option A) and risky gambles (risky option B). We used the number of riskless options as a measurement of risk aversion following Holt and Laury (2002). Time preferences were elicited by asking households to choose between receiving some amount of money now (option A) and a larger amount of money one year later (option B). We used the number of patient options (option B) as a measurement of patience. We also asked three questions about monitoring and blunting strategies (Miller 1987) and nine questions from the Big Five Inventory. Appendix 4 presents all survey questions, and Table A1 in Appendix 3 explains how the variable was constructed for

[^5]analytic purposes.

3. Experimental Results

3.1. Summary Statistics

We surveyed 664 individuals, with a response rate of about 93%, in the price treatment and 531 individuals, with a response rate of about 96%, in the disease treatment. The high response rate is due to the free medical examinations and high trust in village leaders and the local hospital. We begin by performing randomization checks across treatments: the price treatments and the disease treatments. Table 1 reports the mean and standard deviations of four groups of variables: screening decisions, demographic information, health conditions and behaviors, and preference measures. Table A1 in Appendix 3 provides detailed explanations of how we constructed these variables from the survey questions. We use stars on the T 30 variable to indicate whether the variables in $\mathrm{T} 0, \mathrm{~T} 10$, and T 30 are significantly different in the multivariate test. We use a star to indicate whether variables in the cancer treatment are significantly different from those in the diabetes treatment.

[Table 1]

Panel A is the key decision variable: the take-up rate of tests in the treatment. Not surprisingly, as the price of the diabetes test rises, the take-up rate of the test declines significantly, from 0.66 (T0) to 0.37 (T10) and then 0.20 (T30). However, the take-up rates in the disease treatments are 0.86 and 0.89 for diabetes and cancer tests, respectively-which not significantly different from each other-and are much higher than in the price treatments. This is expected, because in the disease treatments both tests were free and individuals were asked whether they would like to take the test after their blood samples were collected; as a result, the cost of taking the test are much lower.

Panel B to Panel D reports demographic information, health information and subjective beliefs about disease risk. The average subjective assessment of disease risk is about $10 \%-13 \%$ chances to get diabetes and 10% to get cancer. Figure A1 shows the distribution of subjective beliefs in both the diabetes treatment and the disease treatment. We have two observations. First, the majority of the subjects report that their subjective risks of diabetes or cancer are zero. Second, there are large heterogeneity in their subjective beliefs about diabetes or cancer risks. One may wonder whether the self-reported subjective risks contain any real information. We show via regression that people who
have better knowledge of diabetes, who are less able to follow treatment requirements, and who are more anxious in general have higher reported subjective risk on diabetes. Conditional on taking the diabetes test, the correlation between subjective beliefs and the test outcome is 0.2188 . Both types of evidence suggest that our self-reported beliefs are not purely errors and have real information content.

Overall, seven out of 72 contrasts from Panel B to Panel D are significant, which is expected under random assignment.

3.2. Price Treatments

3.2.1. Cross-treatment results

In this section we analyze the cross-treatment pattern in the price treatment. Because price is exogenously varied, this part of the result is well identified. We begin by providing summary information for the diabetes tests. We asked individuals to fast before coming to our study. For those who were in a fasting state, the fasting plasma glucose (FPG) test was preformed. Ninety-two individuals took the FPG, and were diagnosed as having diabetes if the outcome level exceeded 7 $\mathrm{mmol} / \mathrm{L} .{ }^{9}$ For those who were not fasting, the random plasma glucose (RPG) test was performed. Forty individuals who took the RPG, and the standard for diagnosis is $11 \mathrm{mmol} / \mathrm{L}$.

Figure 2 displays the take-up rate of the diabetes test across treatments. Not surprisingly, the takeup rate steadily declines as the price of the test increases. More than 60% of participants take the test when it is free, but this rate drops to about 40% when the price is 10 , and to 20% when the price increases to 30 . These changes are all statistically significant.
[Figure 2]
The simple neoclassical intuition predicts that high-risk individuals are more likely to take the test. As a result, when the test price increases, high-risk individuals remain as test takers, while individuals with lower risk tend to select out of the test. Therefore, the average test outcome of those who take the test should demonstrate more diabetes risk as the price increases from T0 to T30. We now investigate this pattern.

We start by looking at how test price affects the average outcome among those who took the test.

[^6]We investigate both average subjective diabetes risk and test outcome conditional on taking the test. If the test takers who remain are indeed the high-risk group, these outcomes should be significantly different across treatments.

Figure 3 displays cross-treatment results. The left figure reports the mean value of subjective risk across treatments, together with the 90% confidence interval. The right figure displays the average diabetes test outcome in terms of blood glucose level across different treatments. For simplicity, we pool FPG and RPG outcomes and use GLU to denote the pooled outcome. ${ }^{10}$ Despite a significant decline in the take-up rate as price increases, both figures suggest no significant difference across treatments either in terms of subjective diabetes risk or the actual outcome. This result is in contrast to the simple neoclassical prediction.
[Figure 3]
Table 2 reports formal regression results on how price increase affects subjective risk and test outcome conditional on taking the test. Consistent with Figure 3, we see no significant difference across treatments on these variables after controlling for demographic information and health background.
[Table 2]
There are several possible explanations for why the mean test outcome does not change across treatments: Either the low- and high-risk groups select out of the test, both groups take the test and the median-risk group selects out of the test, or individuals select out of the test independent of their disease risk. In the first case we expect to see a reduced dispersion of the test outcome, because the test takers are more concentrated on the medial-risk level. In the second case the distribution should have more dispersion, while in the third case the dispersion remains the same.

Figure 4 presents the distribution of test outcome across treatments. As the price increases from 0 to 10 and 30, there is a clear concentration of test outcomes toward the median level. It is also evident that the dispersion in test outcomes is reduced as test price increases. The standard deviation of blood glucose level is 1.455 for T0, 1.205 for T10, and 0.560 for T30. Bartlett's test for equal variances shows that the difference in standard deviations is significant across treatments at the 1% level.

[^7][Figure 4]
We provide more evidence from the perspective of the diabetes prevalence rate-i.e., the proportion of people being diagnosed with diabetes conditional on taking the test. While the average outcome in terms of blood glucose level measures the continuous risk level, the diabetes prevalence rate measures the proportion of high-risk individuals. The prevalence rate is 4.00% (3/75) for T0, 2.44\% ($1 / 41$) for T 10 , and $0.00 \%(0 / 16)$ for T30. If high-risk individuals continue to take the test as the price increases, as predicted by simple neoclassical intuition, the prevalence rate should increase as the test price increases. However, if high-risk individuals select out of the test as the price increases, the prevalence rate will naturally decline from T 0 to T 30 , consistent with the above finding. These results are well identified because prices are exogenously varied on random samples of the participants.

Finding 1: As the test price increases, both low- and high-risk groups select out of the test.

To summarize, we find that as the test price increases, test takers' average subjective risk and blood glucose level do not significantly differ across treatments, but the prevalence rate and standard deviations of the blood glucose level steadily decline. All results suggest that both the high-risk and low-risk groups tend to select out of the test as the price increases.

3.2.2. Within-treatment results

The cross-treatment results suggest that both high-risk and low-risk groups select out of the sample as price increases. Is there a similar pattern within treatment across different levels of subjective risk? A simple neoclassical model that assumes that individuals cannot take the best treatment action before being diagnosed predicts that the take-up rate is monotonically increasing in subjective riski.e., that high-risk individuals are more incentivized to take the test. We test this prediction first.

Figure 5 graphs the relationship between subjective risk and the take-up rate for $\mathrm{T} 0, \mathrm{~T} 10$, and T 30 . Individuals are divided into five groups based on their subjective risk of diabetes: group 1 if subjective risk is 0 ; group 2 if subjective risk is between 0 and 0.2 ; and group 3 , 4 , or 5 if subjective risk is between 0.2 and $0.4 ; 0.4$ and 0.6 ; and above 0.6 , respectively. The x -axis indicates the group, while the y-axis is the average take-up rate within the group.

We can see that for treatments T 0 and T 10 , the relationship is mostly monotonic; however, T30 shows a non-monotonic pattern in which the take-up rate is low when subjective risk is either low or
high, and reaches the peak for the median-level risk group.
[Figure 5]
Equation (1) presents the OLS regression on the within-treatment pattern. The outcome variable Y_{i} is the dummy that indicates whether to take the diabetes test. The key explanatory variable is subjective risk s_{i} and its square term s_{i}^{2}. We control for six demographic variables-gender, age, education, marriage, household size, and monthly income-and 10 variables on health conditions and behaviors: height, weight, BMI, sleeping hours, drinking behavior, smoking behavior, exercise frequency, subjective/objective knowledge of diabetes, and the ability to comply with diabetes treatment.

$$
\begin{equation*}
Y_{i}=\alpha+\beta_{1} s_{i}+\beta_{2} s_{i}^{2}+\gamma X_{i}+\varepsilon_{i} \tag{1}
\end{equation*}
$$

Table 3 reports regression results. For T0 and T10, both the estimates of the subjective risk and its square term are not significantly different from zero, suggesting that subjective risk shows no significant effect on take-up rate. However, there is a significant non-monotonic relationship in T30, in which the take-up rate first increases significantly with subjective risk, then drops significantly after subjective risk reaches a subjective risk level of 0.37 -i.e., both the low and high-risk groups are less likely to take the test. Results are robust when we add different categories of controls gradually. In particular, whether we control for risk-related factors (i.e. gender, age, and BMI) or not does not affect our results. We also conduct a robustness check to test the non-monotonic relationship by constructing five different dummy variables indicating different levels of subjective risk in Appendix Table A2 and the results support that both the low and high-risk groups are less likely to take the test.

[Table 3]

Finding 2: Both the low- and high-risk groups tend to refuse the diabetes test in T30.

In general, these results are not consistent with the simple neoclassical intuition that assumes no best treatment can be taken before being diagnosed: The non-monotonic relationship in T30 is obviously inconsistent with the neoclassical perspective, and the estimates in T0 and T10 also do not show that take-up rate will be significant higher for the high-risk group. But the non-monotonic pattern in T30 conforms to the intuition of information avoidance: Those who with high risk tend to refuse the test, because refusing allows them to maintain optimistic beliefs, which generate high anticipatory utility.

It is important to discuss the alternative explanations because subjective beliefs are not exogenously varied. The high-risk group may have less health knowledge of the benefits of testing and subsequent medical treatment; they may also have higher compliance costs for undergoing treatment, or are financially constrained from undergoing treatment if diagnosed as having diabetes. All of these factors may contribute to test avoidance behavior.

To test these alternatives, we directly test whether subjective risk is correlated with these variables. We measure health knowledge by whether they answer the knowledge questions correctly on the survey. These include subjective and objective knowledge of diabetes (the construction method is specified in Appendix Table A1). We measure treatment compliance cost based on questions about how difficult it would be to comply with diabetes treatment (Q58 and Q59). We measure their financial status based on their self-reported income (Q18 and Q19) and expenditure levels (Q12-14). For this analysis, we use observations from only the price treatment.
[Table 4]
Table 4 reports regression results. We can see that higher subjective risk is significantly correlated with better rather than worse subjective knowledge of diabetes. All other factors are not significantly related to subjective risk. Therefore, the above alternatives do not seem to explain the estimated nonmonotonic pattern.

3.3. Disease Treatment

This section reports the results for the disease treatment, in which the take-up decisions for diabetes and cancer tests are compared. Figure 6 displays the take-up rate across treatments by different levels of subjective risk of having the corresponding disease. The y-axis is the take-up rate, and the x axis denotes groups representing percentiles of subjective risk: group 1 if subjective risk is 0 ; group 2 if subjective risk is between 0 and 0.2 ; and group 3,4 , or 5 if subjective risk is between 0.2 and 0.4 ; 0.4 and 0.6 ; and above 0.6 , respectively.

We can see that the take-up pattern is quite different for diabetes and cancer treatments. Both treatments start with a high take-up rate-around 0.8 to 0.9 -when subjective risk is zero. This is because both tests are free and have no additional transaction cost, as the blood has already been taken for other purposes. In the diabetes treatment, despite a slight drop when subjective risk is in the middle
range, the take-up rate generally increases with subjective risk, and reaches about 1 when the subjective risk is above 0.6. The pattern is consistent with group T0 in Figure 5 in the price treatments. In the cancer treatment, however, there is an obvious non-monotonic relationship, in which the take-up rate is highest when subjective risk is between 0 and 0.2 , then steadily drops as subjective risk increases. When subjective risk is above 0.6 , the take-up rate becomes 0.8 -lower than when subjective risk is zero.
[Figure 6]
Table 5 tests whether there is a non-monotonic effect of subjective risk on the take-up rate within each treatment. The first column represents the diabetes treatment. The estimate of the effect of subjective risk suggests that for each 10% increase in subjective risk, the take-up rate will increase by 7.9%. The square term is negative, which suggests some evidence of drop in the take-up rate for a high level of subjective risk, but this square term is not significant. The estimated turning point at which the high-risk group starts to avoid the test is at the subjective risk level of 0.57 . The second column represents the cancer treatment. We see a strong and significant non-monotonic effect in this case: The take-up rate first increases and then decreases with subjective risk. The estimated turning point is at a subjective risk level of 0.27 , which is lower than the turning point for the diabetes treatment. These results are well identified because types of disease are exogenously varied on random samples of the participants.

Finding 3: The non-monotonic pattern between the subjective probability of having the corresponding disease and the take-up decision is stronger in the cancer treatment than the diabetes treatment.
[Table 5]
We would like to further investigate whether subjects' evaluations of the severity of the disease would affect the take-up pattern. We add the variable "controllable" constructed from Q55 and Q69 in the survey. Q55 asks whether subjects believe that diabetes is curable, and Q69 asks whether subjects believe that cancer can be controlled to some degree. The variable "controllable" takes the value 1 if the answer to Q55 is "Yes" and 0 otherwise in the diabetes treatment; it takes the value 1 if the answer to Q69 is "Yes" and 0 otherwise in the cancer treatment.

In columns (3) and (4) of Table 4, we add the variable "controllable" and interact it with subjective
risk for the two disease treatments. Column (3) reports results for the diabetes treatment. Those who believe that diabetes is less controllable tend to have a significant non-monotonic pattern: The probability of taking the test first increases and then decreases with subjective risk, with the turning point around the subjective risk level of 0.51 . When subjects believe that diabetes is more controllable, this tendency is weakened, despite the nonsignificant estimates of the interaction between controllable and the risk terms, and the estimated turning point rises to 0.72 . Column (4) reports results for cancer. Similar to the case with diabetes, when subjects believe that cancer is less controllable, they tend to demonstrate a stronger non-monotonic pattern, with the turning point of for subjective risk level being 0.22 . For those believe that cancer can be controlled, however, this pattern is significantly weakened, and the estimating turning point increases to 0.31 .

Finding 4: In both the diabetes and cancer treatments, those who believe that the disease is less controllable demonstrate a stronger pattern for a non-monotonic relationship, and the estimated turning point for the high-risk group to avoid taking the test is also lower.

In general, the key message from the disease treatment is that when the disease is more serious or believed to be less controllable or curable, high-risk individuals are more likely to avoid the test.

4. Theoretical Explanation: The Optimal Expectations Model

4.1. The model

To provide a formal explanation for our empirical findings, we apply the theoretical model from Oster et al. (2013) to study take-up decisions in our setting. Their model is based on an optimal expectation model from Brunnermeier and Parker (2005). The idea of the model is that belief about future health status generates utility, which we call anticipatory utility. If individuals take the medical tests, their beliefs on health status must update in a Bayesian way; i.e., their beliefs will be rational. They will also choose the correct actions based on their health status. However, if individuals do not take the test, they are allowed to choose their own beliefs based on the trade-off between the anticipation utility of feeling healthy today and the cost of wrong actions if they remain ignorant. The influence of anticipatory utility based on current beliefs creates the value of choosing overly optimistic beliefs, and this is only possible when one avoids taking the test.

Specifically, there is a binary state $s \in\{0,1\}$ where $s=1$ indicates that the individual has the disease (diabetes or cancer) and $s=0$ otherwise. Individuals have some exogenous $p=E(s)$, which
measures the true probability of having the disease. At time 0 , individuals choose whether or not to learn the true state through medical testing with cost C. At time 1, individuals choose a binary action $a \in\{0,1\}$, which can be understood as treatment related to the disease, and experience utility associated with their expectations of time 2 consumption. Ex post individual consumption utility is maximized when action is matched to state. At time 2, the true state is revealed, and individuals receive consumption utility.

The key assumption in the model is that individuals experience anticipation utility over future health status. Individuals form beliefs about their probability of having the disease, π, and π can be different from the true probability p. Let $u(a, s)$ be the consumption utility given action a and health state s. Let δ be the weight on anticipation utility. Equation (2) gives the utility function at time 0 , which is a weighted average of anticipation utility based on π and consumption utility based on p.

$$
\begin{equation*}
U(\pi \mid p)=\delta E[u(\hat{a}, s \mid \pi)]+E[u(\hat{a}, s \mid p)] \tag{2}
\end{equation*}
$$

The optimal choices are derived in a backward-induction manner. At time 1, individuals decide on the optimal action given belief π to maximize anticipatory utility. At time 0 , individuals maximize $U(\pi \mid p)$ by choosing whether to take the test, and if not, what is the optimal belief π. If individuals take the test, their beliefs become rational, so $\pi=\mathrm{p}$. If they remain untested, they also choose the optimal π to maximize total utility $U(\pi \mid p)$.

When individuals do not learn the true state at time 0 , they choose action $\hat{a}(\pi)=$ $\operatorname{argmax}_{a} E[u(a, s \mid \pi)]$. In this case, the anticipation utility at time 1 is $\delta E[u(\hat{a}, s \mid \pi)]=$ $\delta(\pi u(\hat{a}, 1)+(1-\pi) u(\hat{a}, 0))$, and the expected consumption utility at time 2 is $E[u(\hat{a}, s \mid p)]=$ $p u(\hat{a}, 1)+(1-p) u(\hat{a}, 0)$. Thus, the utility of not testing is

$$
\begin{equation*}
U_{\text {untest }}=\delta(\pi u(\hat{a}, 1)+(1-\pi) u(\hat{a}, 0))+p u(\hat{a}, 1)+(1-p) u(\hat{a}, 0) \tag{3}
\end{equation*}
$$

If they learn the true state at time 0 , they will adopt ex post optimal action $a=s$. The utility of testing is

$$
\begin{equation*}
U_{\text {test }}=(1+\delta)[p u(1,1)+(1-p) u(0,0)] \tag{4}
\end{equation*}
$$

When individuals decide whether to take the test, they compare the utility of testing to the utility of not testing given their optimal choices.

We follow Oster et al. (2013) and define utility function u as follows. Being healthy and taking the state-matched action has a value of $1(u(0,0)=1)$. Taking the wrong action in the healthy state
leads to the utility loss of Φ compared to taking the right action $(u(1,0)=1-\Phi)$. Being sick and taking the state-matched action has a value of $0(u(1,1)=0)$. Taking the wrong action in the sick state leads to a utility loss of Ω compared to taking the right action $(u(0,1)=-\Omega)$. Therefore Φ measures the cost of taking any action when healthy and Ω measures the cost of not taking any action when sick. We assume that $\Phi, \Omega<1$, implying that individuals value health more than they value the correct action.

The optimal solution takes the following form. At time 1, according to Lemma 1 in Oster et al. (2013), $\hat{a}(\pi)=0$ if $\pi \leq \frac{\Phi}{\Phi+\Omega}$ and $\hat{a}(\pi)=1$ if $\pi>\frac{\Phi}{\Phi+\Omega}$. Define $p^{*}=\frac{\Phi}{\Phi+\Omega}+\frac{\delta \Phi(1+\Omega)}{(\Phi+\Omega)^{2}}$. At time 0 , according to Propositions 1 and 2 in Oster et al. (2013), when individuals remain untested the manipulation of beliefs goes as follows: When $\mathrm{p} \leq p^{*}, \pi=0$ and $a=0$. When $\mathrm{p}>p^{*}, \pi=\frac{\Phi}{\Phi+\Omega}$ and $a=1$. The intuition is as follows. Since action is binary, there is a range in which changing π does not change the optimal actions, and hence consumption utility. To maximize anticipation utility, individuals will choose the lowest π in that range, leading to the corner solution of π.

When individuals decide whether to take the test, they face the following trade-offs. The benefit of not testing is to hold biased beliefs (low π), which generate high anticipation utility. The benefit of testing is to avoid the utility loss from the wrong state-matched action (Φ, Ω). If the former consideration outweighs the latter, individuals will choose not to be tested.
[Figure 7]
Figure 7 shows the total value of testing when the test is free and there is low value of anticipation $(\delta<\Omega)$. The horizontal axis is p. The vertical axis is the total value of testing, which equals the benefit of testing minus the benefit of not testing. Positive values imply that individuals will choose to take the test. We can see that when the test is free, those with low p will take the test and those with high p will avoid the test. The positive value of testing in low p is driven by $\delta<\Omega$. When there is low value of anticipation, the benefit of testing outweighs the benefit of not testing and holding biased beliefs. The negative value of testing in high p is mainly driven by two factors. First, the benefit of not testing in terms of anticipatory utility is increasing in p when $p>p^{*}$. In this case, not testing will allow individuals to hold biased beliefs $\pi=\frac{\Phi}{\Phi+\Omega}$ (when $p>p^{*}$), but testing forces them to form rational beliefs $\pi=p$. The difference in the anticipatory utility generated by the two beliefs is increasing in p . Second, the benefit of testing in terms of consumption utility is decreasing in p when $p>p^{*}$. This
is because in this case, individuals are taking proper action regardless of whether they test or not. This non-monotonic relationship also appears in Figure 6 of Oster et al. (2013), but is not formally discussed in that paper. However, this prediction is very important for our study, since we find that high-risk individuals tend to avoid the test-a pattern that is consistent with this omitted prediction in Oster et al. (2013).

4.2. Model predictions

This section obtains several new predictions of the model not explicitly derived in Oster et al. (2013), based on the non-monotonic relationship between disease risk and the value of testing. To make the utility function general enough to facilitate comparison between cancer and diabetes, we extend the model from Oster et al. (2013) and assume two changes in utility for cancer compared to that of diabetes. First, having cancer and taking the state-matched action has a value of $-v$ instead of 0 ; i.e. $u(1,1)=-v$. We assume $v>0$, since the utility of cancer patients after taking cancer treatment is likely to be lower than that of diabetes patients after taking diabetes treatment. Second, the utility loss of the wrong action relative to the right action given cancer, represented by Ω_{c}, is higher than when individuals have diabetes, represented by Ω. Therefore we define the utility level of taking the wrong action given cancer as $u(0,1)=-v-\Omega_{c}$, assuming that $\Omega_{c}>\Omega$.

Since the total value of testing is non-monotonic, there are two potential cutoff points at which the total value of testing is zero. We define $p_{\text {low }}$ and $p_{\text {high }}$ to be the low and high cutoff points, respectively. Individuals with probability of having the disease lower than $p_{\text {low }}$ and higher than $p_{\text {high }}$ will avoid the test. We can solve the closed form based on Proposition 3 in Oster et al. (2013). Proposition 1 below summarizes model predictions.

Proposition 1 (Price Treatment). When $0<\delta+\delta v<\Omega, p_{\text {low }}=\frac{C}{\Omega-\delta-\delta v}$, and $p_{\text {high }}=$ $\frac{\delta \Phi(1+\Omega+\mathrm{v})}{(\Phi+\Omega)(\delta+\delta v+\Phi)}+\frac{\Phi-C}{\delta+\delta v+\Phi^{\prime}}$, we show that $\frac{\partial p_{\text {low }}}{\partial C}>0$, and $\frac{\partial p_{\text {high }}}{\partial C}<0$.

Proof: see Appendix A. 2
Proposition 1 explores how the cutoff level for low- and high-risk individuals to avoid taking the test varies with test price (C). We focus on $p_{\text {high }}$, since this is more relevant for our purpose. Proposition 1 suggests that the higher the test price, the lower the high cutoff point, and the more likely we will observe information avoidance in the high-risk group, given that observations at the extreme
right tail may be scarce empirically. The intuition is that given the non-monotonic relationship in Figure 7, an increase in the test price will reduce the value of testing, and thus marginal individuals around high cutoffs will avoid the information.

In the price treatment, we randomize the price of diabetes testing, which is the cost of test C in the model. In the disease treatment, since cancer is more serious than diabetes, it is reasonable to assume that individuals would incur more loss from cancer if they do not treat the disease when they have it.

Figure 8, Panel A illustrates the predictions from the price treatment when we vary the cost of testing based on Proposition 1. The horizontal axis is p, the vertical axis is the total value of testing, and C is the cost of testing. When $\mathrm{C}=0$, the total value of testing is an inverse V-shape over p, which is the same as Figure 7. In this case, those with low p are likely to take the test and those with high p will not take the test. When $\mathrm{C}>0$, the total value of testing moves downward. In this case, those with very low p and very high p are predicted to not take the test. The model, therefore, makes the following two predictions for the price treatment.
[Figure 8]
Prediction 1: When the test price is positive, the relationship between beliefs about disease probability and test take-up is non-monotonic: The take-up rate should be lower for low- and high-risk groups.

The take-up for the high-risk group is likely to be low due to the benefit of holding biased beliefs. For the low-risk group the take-up is low, since the benefit of testing to avoid utility loss is also low. This prediction provides a reasonable explanation for the observed non-monotonic pattern in T30 (finding 1). However, the patterns in T0 and T10 are not fully consistent with this prediction. One possible reason is the following: Proposition 1 suggests that the predicted cutoff point for the high-risk group to avoid the test decreases with test cost. For very low test cost, such as our T0 and T10, the cutoff point for the high-risk group to avoid the test is very high. In reality. there may be few observations with subjective risk beyond this high cutoff point. With the higher price in T30, however, the cutoff point is not that high, so we have observations beyond that point to demonstrate the nonmonotonic pattern empirically. The pattern for T30 is also more informative, because it is the most comparable to the market price, and hence this non-monotonic pattern is more relevant.

Prediction 2: In the price treatment, increasing the test price will reduce take-up for both the lowrisk and the high-risk groups. Thus, conditioning on taking the tests, increasing the test price will not change the average test outcomes but reduce the dispersion of test outcomes.

Increasing the test price will reduce the total value of testing. Following prediction 1, when the take-up for tests is an inverse V-shape over p, marginal individuals who take the tests in high p would not choose to take the test. Marginal individuals who take the test in low p would not choose to take the test, either. Therefore, increasing the test price will not change average test outcomes, but rather reduce the dispersion of test outcomes. This is also fully consistent with our finding 2.

Proposition 2 (Disease Treatment). When $0<\delta+\delta v<\Omega, \quad p_{\text {low }}=\frac{c}{\Omega-\delta-\delta v}, \quad$ and $p_{\text {high }}=$ $\frac{\delta \Phi(1+\Omega+\mathrm{v})}{(\Phi+\Omega)(\delta+\delta v+\phi)}+\frac{\Phi-C}{\delta+\delta v+\Phi^{\prime}}$ We show that $\frac{\partial p_{\text {low }}}{\partial \Omega}<0, \frac{\partial p_{\text {low }}}{\partial \mathrm{v}}>0, \frac{\partial p_{\text {high }}}{\partial \Omega}<0$, and $\frac{\partial p_{\text {high }}}{\partial \mathrm{v}}<0$ when C is small.

Proof: see Appendix A. 2
Proposition 2 explores how the cutoff level for low- and high-risk individuals to avoid taking the test varies with the utility loss of taking the wrong action when being sick (Ω) and how serious the disease is (v). Figure 8, Panel B illustrates the prediction from the disease treatment when the test is free. The horizontal axis is p. The vertical axis is the total value of testing. Given the two changes in v and Ω, we see that the non-monotonic relationship between p and the value of screening is stronger in the cancer group, i.e., the cut-off level of p beyond which high-risk individuals will choose not to take the test is lower in the case of cancer than diabetes. Proposition 2 shows that both changes in parameters contribute to the stronger non-monotonic relationship. Each change alone also has the same prediction. The intuition is as follows. First, since the health state with cancer is worse than with diabetes, even after the proper treatment $(v>0)$, the benefit of taking action when sick is lower for cancer. This reduces the benefit of taking the test. Second, since cancer has higher Ω, individuals will take the proper action $(a=1)$ without taking the test even when π is lower, which allows these individuals to hold more optimistic beliefs (lower π) while still avoidin the cost of not taking action when sick. This increases the benefit of not taking the test, and thus marginal individuals around high cutoffs will avoid the information. (See Appendix A. 2 for proof of comparative statics with respect to v and Ω in the disease treatment.) We therefore have the following predictions:

Prediction 3: In the disease treatment, since the cancer test has larger v and Ω than the diabetes test, the non-monotonic relationship between beliefs of disease risk and take-up for tests is stronger in the cancer treatment.

Note that Proposition 1 suggests that the high cutoff point is decreasing in Ω. In practice there might not be many people with extreme high beliefs about disease risk, so we might not observe the non-monotonic relationship due to lack of observations at the right tail. The cancer treatment strengthens the non-monotonic relationship, because the cutoff point for the high-risk group to avoid the test is lower and therefore we are likely to observe the right-tail pattern of not taking the test. This prediction can explain finding 3.

Regarding finding 4, the explanation depends on how we interpret "the disease is less controllable" in terms of the change in parameters in the model. There are three possibilities. Either "less controllable" means higher v-i.e., the health status is worse even after the treatment-or it means lower Ω, i.e., the utility cost from the wrong action (no treatment) when sick is low, or both. Higher v alone predicts that "less controllable" belief implies more salient information avoidance among the high-risk group, but lower Ω predicts the opposite. If both parameters change, our simulation suggests that as long as the change in v is not too drastic, the v effect dominates and the model prediction is consistent with our finding 4. Therefore, the model can still predict a reasonable explanation for finding 4.

In general, the optimal expectations model of Oster et al. (2013) provides a satisfactory explanation for our findings. We explore the non-monotonic relationship between the beliefs of probability risk and the take-up decision, a prediction of the model ignored in the original paper, and investigate how this pattern-as well as the associated cutoff risk level for the high-risk group to avoid the test-varies with test price and disease type. Our main findings are all consistent with model predictions.

4.3. The model without anticipatory utility

The evidence above suggests that the optimal expectation model of Oster et al. (2013) provides a satisfactory explanation for our findings. In this subsection, we discuss whether the model without anticipatory utility can explain our findings. Proposition 3 below summarizes model predictions under the assumption of no anticipation.

Proposition 3. When $\delta=0, p_{\text {low }}=\frac{C}{\Omega-\delta}$, and $p_{\text {high }}=\frac{\delta \Phi(1+\Omega)}{(\Phi+\Omega)(\delta+\Phi)}+\frac{\Phi-C}{\delta+\Phi}$, we show that $\frac{\partial p_{\text {low }}}{\partial C}>0, \frac{\partial p_{\text {low }}}{\partial \Omega}<0, \frac{\partial p_{\text {high }}}{\partial C}<0$, and $\frac{\partial p_{\text {high }}}{\partial \Omega}=0$.

Proof: see Appendix A. 2

From proposition 3, we can see that the model without anticipation in Oster et al.'s (2013) setting can also predict that both the low- and high-risk groups are more likely to avoid the test. This is because their model assumes that high-risk individuals will take the same proper treatment action as in the medical system, even without being formally diagnosed. As discussed before, if we relax this assumption by assuming that the treatment action one can take is not the best compared to the one after being diagnosed, the high-risk group is less likely to avoid the test in the neoclassical sense.

However, even within Oster et al.'s (2013) setting, models with and without anticipatory utility can be distinguished in the disease treatment. In particular, the model with anticipatory utility ($0<$ $\delta<\Omega$) predicts that the cutoff point for high-risk individuals to avoid the test is decreasing in the utility loss of taking the wrong action when sick $\left(\frac{\partial p_{\text {high }}}{\partial \Omega}<0\right)$, i.e., it is more likely to observe the nonmonotonic relationship empirically in the cancer treatment than in the diabetes treatment. On the contrary, the model without anticipatory utility $(\delta=0)$ predicts that the cutoff point is independent of the utility loss of taking the wrong action when sick $\left(\frac{\partial p_{\text {high }}}{\partial \Omega}=0\right)$. The intuition is that without anticipatory utility, an individual should always take the test when it is free. Thus, changes in the disease type will not change testing behavior and, all will take the tests.

Figure 9 shows the predictions of the model with no anticipatory utility. Panel A illustrates the predictions from the price treatment when we vary the cost of testing based on Proposition 2. The prediction is similar to Figure 8, Panel A. Panel B illustrates the predictions from the disease treatment when the test is free. The prediction is different from Figure 8, Panel B. The model without anticipation predicts that changes in the disease type will not change testing behavior and all will take the tests.

In the disease treatment, we show that the cancer treatment strengthens the non-monotonic relationship, because the cutoff point for the high-risk group to avoid the test is lower and therefore we are likely to observe the right-tail pattern of not taking the test. This is consistent with the model of optimal expectations, but not consistent with the model without anticipatory utility.

5. Estimation, Simulation, and Welfare Analysis

5.1. Structural Estimation

We use the method of simulated moments (MSM) to estimate the three parameters of the model
using data in the price treatment: the weight on anticipation utility, δ; the cost of taking any action when healthy, Φ; and the cost of not taking any action when sick, Ω. When $\delta=0$, there is only consumption utility and the model reduces to the neoclassic model.

Let d be an indicator to measure the actual testing decision and \hat{p} be the predicted probability of testing. The estimation is based on six moment conditions: testing decisions (d) in T0, T10, and T30 (Equation 5), and subjective beliefs (π) in T0, T10, and T30, respectively (Equation 6). The moment conditions minimize the predicted value with actual value to obtain optimal parameter estimates.

$$
\begin{align*}
& \frac{1}{N} \sum(\hat{\mathrm{p}}-\mathrm{d})=0 \tag{5}\\
& \frac{1}{N} \sum(\hat{\pi}-\pi)=0 \tag{6}
\end{align*}
$$

We use a random utility model to calculate the moments of testing decisions. Let $u(\delta, \Phi, \Omega)$ be the net value of testing, i.e., the utility of testing minus the utility of not testing. We use a randomutility model:

$$
\begin{equation*}
\widetilde{u}(\delta, \Phi, \Omega)=\frac{1}{\sigma} u(\delta, \Phi, \Omega)+\varepsilon, \tag{7}
\end{equation*}
$$

where ε is assumed to be an i.i.d. error term and modeled as type I extreme value. The utility is scaled by $1 / \sigma$ and the parameter σ is the scale parameter, because it scales the utility to reflect the variance of the unobserved portion of utility. The probability of diabetes testing is presented by the usual logit formula:

$$
\begin{equation*}
p(d=1)=\frac{\exp (u(\delta, \Phi, \Omega))}{\exp (u(\delta, \Phi, \Omega))+1} \tag{8}
\end{equation*}
$$

We use Propositions 1 and 2 in Oster et al. (2013) to calculate the moments of subjective beliefs. When $\mathrm{p} \leq p^{*}, \pi=0$ and $a=0$. When $\mathrm{p}>p^{*}, \pi=\frac{\Phi}{\Phi+\Omega}$ and $a=1$. In our estimation, we do not observe diabetes risk p . We assume that p follows a truncated standard normal distribution, $\mathrm{p} \sim \mathrm{N}(0,1)$. We simulate objective risks and use MSM to estimate parameter δ, Φ, and Ω.

Table 6 reports the estimated coefficients. The estimated weight on anticipation utility is 0.48 . The anticipation utility is about half as much as consumption utility. Recall that being healthy and taking the state-matched action has a value of 1 . Being sick and taking the state-matched action has a value of 0 . The estimated cost of not taking any action when sick is 0.61 . The estimated cost of taking any action when healthy is 0.47 . All the parameters are significantly different from zero at 1% the level.

In our estimation, we find that $\delta<\Omega$. This is consistent with the condition in Proposition 1 and further supports our empirical predictions.
[Table 6]

5.2. Simulation and Welfare Analysis

We use our estimated parameters to conduct counterfactual welfare analysis under different screening policies. We have three types of screening policies: the status quo, the subsidy policy, and the mandate policy. The benchmark policy is the status quo when the cost of testing is 30 RMB. This is the case in our T30 group and close to the real-life situation. In the subsidy policy, we provide free diabetes tests and ask individuals to decide whether to take the tests. We conduct simulations for several different subsidy policies. In the full subsidy policy, we provide free diabetes tests to everyone, which is the same as our T0 group. In the targeting subsidy policy (50), we only provide free tests to individuals with above-median risk and provide the status quo price to individuals with below-median risk. In real life, such targeted policies are often used by policy makers to reach risky individuals. In the full mandate policy, we provide free diabetes tests and require all individuals to take the tests. Similarly, in the targeted mandate policy (50), we only require individuals with above-median risk to take the tests and provide the status quo price to individuals with below-median risk. In real life, policy makers can use annual health screening as a condition for accessing health insurance to achieve mandates.

Our main purpose is to evaluate the welfare effect of different policies compared to the status quo policy, given certain model specification and policy maker's objective function. The model specification determines the optimal screening decision. We consider both the neoclassical model with only consumption utility $(\delta=0)$ and the optimal expectations model discussed in this paper, given the estimated δ. Other parameters are the same as in both models.

The policy maker's objective determines the welfare criterion. The policy maker might not understand that anticipation utility affect screening decisions. Even when the policy maker understands that the individuals make their screening choices based on the optimal expectations model, the policy maker may or may not want to incorporate the anticipatory utility into the objective function. Thus, we analyze three cases. In the first case, the policy maker does not understand the anticipation utility.

They predict the screening decisions and calculate the welfare only based on consumption utility. In the second case, the policy maker only cares about maximizing consumption utility even when they are aware of the existence of anticipatory utility. ${ }^{11}$ They predict the screening decisions based on the overall utility - both consumption utility and anticipatory utility, but calculate the welfare only based on consumption utility. In the third case, the policy maker cares about the overall utility. They predict screening decisions and calculate the welfare based on both consumption utility and anticipatory utility.

Since the policy maker needs to pay the subsidy, we define the subsidy efficiency to be the welfare changes (depending on policy maker's objective) per person receiving the subsidy, and use it to measure the cost effectiveness of the policy. For example, if a policy increases the welfare from the status quo (T30) by $\Delta \mathrm{U}$ in the population and the number of persons receiving the subsidy is $\Delta \mathrm{N}$, the subsidy efficiency is $\frac{\Delta U}{\Delta N}$.

Combining model specification with policy maker's welfare criterion, we end up with three cases, which is represented by Panel A, B and C in Table 7, respectively: neoclassical model with consumption utility as welfare criterion, optimal expectations model with consumption utility as welfare criterion and optimal expectations model with both the consumption utility and anticipatory utility as the welfare criterion. Within each case, we analyze the cost effectiveness of each policy mentioned above. We can compare the cost effectiveness of the first two cases because they are both under the same welfare criterion; but we can only make comparison within the third case.
[Table 7]
Panel A reports simulation results assuming individuals have neoclassical preferences (i.e., consumption utility only) under different policy environments. In all welfare calculations, we multiply the consumption utility by 1,000 to make presentation more convenient. Under the status quo policy, the neoclassical model predicts that about 62% of individuals take the diabetes test, and mean consumption utility is 730 . The full subsidy policy increases take-up to 89% and mean consumption utility to 846 . For the subsidy paid for each person, the utility increases by 0.20 relative to the status

[^8]quo policy. So the subsidy efficiency for the full subsidy policy is 0.20 . The targeting subsidy policy (50) increases take-up to 75% and mean consumption utility to 789 . The subsidy efficiency is 0.20 . Simulation results suggest that the targeted subsidy policy is similar to the full subsidy policy in terms of cost effectiveness.

The subsidy efficiency of the full mandate policy is 0.17 , while that of the targeted mandate policy (50) is 0.16 . These results suggest that the mandate policy is worse than the subsidy policy in general, both in terms of increase in consumption utility and cost effectiveness. The intuition is that the subsidy policy still allows individuals to make a welfare-improving choice based on the subsidy, and thus only changes the behavior of marginal individuals. In contrast, the mandate policy might force individuals with very low benefit to take the test.

Panel B reports simulation results for the anticipation utility model with only consumption utility as welfare criterion. We calculate welfare based on consumption utility only. Under the status quo policy, about 16% of individuals take the diabetes test. Take-up is lower than in the status quo under neoclassic utility due to information avoidance. Mean consumption utility in this case is 677 . The full subsidy policy increases take-up to 62% and the mean consumption utility to 813 . The subsidy efficiency for the full subsidy is 0.34 , which is 70% greater than the one based on the neoclassic model in Panel A. The targeted subsidy policy (50) increases take-up to 39% and mean consumption utility to 746 . The subsidy efficiency is 0.34 , which is 68% greater than that based on the neoclassic model in Panel A. In the full mandate policy (50), the subsidy efficiency is 0.25 , which is 50% greater than that based on the neoclassic utility. In the targeted mandate policy (50), the subsidy efficiency is 0.23 , which is 39% greater than that based on neoclassic utility.

Our results suggest that if individuals have anticipation utility that leads to information avoidance, the policy maker who views individuals as neoclassical utility maximizers underestimates the cost effectiveness of both the subsidy policy and mandate policy in terms of consumption utility change. The subsidy policy is in particular more cost effective hence being underestimated more.

We further simulate a perfect targeted subsidy policy in which we only provide free tests to information avoidant individuals. We define individuals to be information avoidant due to anticipatory utility if they take the test in the neoclassic model but refuse to take the test in the anticipation utility model under the status quo policy. Figure A2 shows the predictions of the model with Neoclassical

Model and Anticipation Utility Model when testing cost $\mathrm{C}>0$. The horizontal axis is p . The vertical axis is the total value of testing. The range between $p_{\text {low } 0}$, and $p_{\text {low }}$, and the range between $p_{\text {higho }}$ and $p_{\text {high }}$ indicate those who exhibit information avoidance behavior due to anticipatory utility. The figure shows that both relatively high risk and relatively low risk individuals tend to avoid the test under anticipation utility model. We find that such a policy targeting information avoidant individuals is the most cost effective of all the policies, in which the subsidy efficiency is 0.43 . This result shows that if individuals indeed have anticipatory utility, identifying and targeting individuals with information avoidant tendencies is a better policy than previous ones. ${ }^{12}$

Panel C reports simulation results for the anticipation utility model with both consumption utility and anticipation utility as welfare criterion. We find that the mandate policy is worse than the subsidy policy in general. The pattern is similar to Panel A and B. We cannot compare the cost effectiveness to the first two cases because they are under the different welfare criterion.

6. Conclusion

This paper reports results from a randomized field experiment in rural China to investigate whether individuals have a tendency to avoid medical tests due to information avoidance. We randomly assigned individuals to different treatments that varied the price of a diabetes test, and different treatments to vary the type of the disease being tested, diabetes or cancer. We observe that both lowand high-risk individuals are less likely to take the test-a phenomenon not revealed before-by using a field experiment. Subsequently, we find that as the test price increases, the average test outcome remains the same but the dispersion of the outcome decreases, indicating that both low- and high-risk individuals select out of the test as price increase. We also find interesting heterogeneity: The pattern in which high-risk individuals avoid the test is more salient when the test price is higher and when the disease is more severe.

We apply the optimal expectations model of Oster et al. (2013) to explain our findings. The model predicts a non-monotonic relationship between beliefs on the probability of having the disease and the probability of taking the test-a prediction not explicitly derived or emphasized in Oster et al.-and

[^9]explain our empirical findings. The model also predicts heterogeneity across test price and disease type consistent with our empirical findings. These results not only provide a satisfactory explanation for the empirical findings, but also help to distinguish the optimal expectations model from the anxiety model empirically.

Why do our findings differ from those of Oster et al. (2013) and Okeke et al. (2013)? Our Proposition 1 makes clear predictions about comparative statics with respect to C and Ω. It shows that high-risk individuals are more likely to avoid information when the test price is high and the utility loss of taking the wrong action when sick is high. Our finding 2 in the price treatments and finding 3 in the disease treatments are consistent with these predictions. Since Huntington's disease is not curable, Ω in Oster et al. (2013) is likely to be small, and thus high-risk individuals are less likely to avoid information. The test cost is also relatively low in Okeke et al. (2013). They state in section 5.2.1 that "even the highest price offered represented approximately a 90% subsidy". The fact that they do not observe that high-risk individuals are less likely to avoid information could be due to this low test price. Therefore, our propositions might help to reconcile mixed results in different settings and explain under what conditions high-risk individuals avoid information.

How the tendency to avoid information varies across the probability of having the disease has important policy implications. The test is more valuable for high-risk individuals. Under simple neoclassical intuition, they are more likely to take the test in any case; but according to our empirical results and under the optimal expectations model, they are less likely to take the test. If the latter is true, proper interventions that target the high-risk group create higher welfare gains than traditionally thought. Also, new policies that target the group that attaches higher weight to anticipatory utility can be more effective than traditional policies.

Reference

Allcott, Hunt, and Dmitry Taubinsky (2015). "Evaluating Behaviorally Motivated Policy: Experimental Evidence from the Lightbulb Market." American Economic Review, Vol 105, No. 8 (August), pages 2501-2538.
Beshears, John, James Choi, Christopher Clayton, Christopher Harris, David Laibson, Brigitte Madrian. 2017. "Optimal Illiquidity" Working paper.
Bénabou, Roland, and J. Tirole, "Self Confidence and Personal Motivation," Quarterly Journal of Economics, 117 (2002), 871-915.
Brunnermeier, Markus K., and J. A. Parker. "Optimal Expectations." American Economic Review 95.4(2005):1092-1118.
Caplan, L. S. "Patient Delay in Seeking Help for Potential Breast Cancer. "Public Health Reviews 23.3(1995):263-74.
Caplin, Andrew, and J. Leahy. "Psychological Expected Utility Theory and Anticipatory Feelings." Quarterly Journal of Economics 116.1(2001):55-79.
Eliaz, Kfir, and R. Spiegler. "Can anticipatory feelings explain anomalous choices of information sources?" Games \& Economic Behavior 56.1(2006):87-104.
Epstein, Larry G. "Living with Risk." The Review of Economic Studies 75.4(2008): 1121-1141
Golman, Russell, D. Hagmann, and G. Loewenstein. "Information Avoidance." Journal of Economic Literature 55(2017):96-135.
Ganguly, Ananda R, and J. Tasoff. "Fantasy and Dread: The Demand for Information and the Consumption Utility of the Future." Management Science 63(2016):4037-4060.
Holt, Charles A., and S. K. Laury. "Risk Aversion and Incentive Effects." American Economic Review 92.5(2002):1644-1655.
International Diabetes Federation, 2015. Brussels: International Diabetes Federation
Kőszegi, Botond. "Health anxiety and patient behavior." Journal of Health Economics 22.6(2003):1073-1084.

Kőszegi, Botond and Matthew Rabin. "Reference-dependent consumption plans." The American Economic Review, 99(3):909-936, 2009.
Kőszegi, Botond, "Utility fromAnticipation andPersonal Equilibrium," Economic Theory, 44 (2010), 415-444.
Lerman, C, et al. "Genetic Testing in Families with Hereditary Nonpolyposis Colon Cancer. " JAMA 281.17(1999):1618.

Liebman, J. and R. Zeckhauser, "Simple Humans, Complex Insurance, Subtle Subsidies," Working Paper 14330, NBER 2008.
Lyter, D. W., et al. "The HIV antibody test: why gay and bisexual men want or do not want to know their results. " Public Health Reports 102.5(1987):468.
Meechan, G, J. Collins, and K. Petrie. " Delay in Seeking Medical Care for Self-Detected Breast Symptoms in New Zealand Women." New Zealand Medical Journal 115 (1166):U257.
Miller, S. M. "Monitoring and blunting: validation of a questionnaire to assess styles of information seeking under threat." Journal of Personality \& Social Psychology 52.2(1987):345-53.
Okeke, E. N., C. A. Adepiti, and K. O. Ajenifuja. "What is the price of prevention? New evidence from a field experiment." Journal of Health Economics 32.1(2013):207.
Oster, Emily, I. Shoulson, and E. R. Dorsey. "Optimal Expectations and Limited Medical Testing: Evidence from Huntington Disease." American Economic Review 103.2(2013):804-830.

Persoskie, Alexander, Rebecca A. Ferrer, and William M. P. Klein. 2014. "Association of Cancer Worry and Perceived Risk with Doctor Avoidance: An Analysis of Information Avoidance in a Nationally Representative US Sample." Journal of Behavioral Medicine 37 (5): 977-87.
Sullivan, Patrick S., Amy Lansky, and Amy Drake. 2004. "Failure to Return for HIV Test Results among Persons at High Risk for HIV Infection: Results from a Multistate Interview Project." JAIDS Journal of Acquired Immune Deficiency Syndromes 35 (5): 511-18.
Thornton, R. L. "The Demand for, and Impact of, Learning HIV Status." American Economic Review 98.5(2008):1829-1863.
World Health Organization (2016), Global Report on Diabetes. Geneva, 2016.
World Health Organization (2017), "The top 10 causes of death Fact sheet". World Health Organization. Jan 2017.
Yang, W., et al. "Prevalence of diabetes among men and women in China." New England Journal of Medicine 362.25(2010):2425.

Figure 1. Experimental Design

Panel A: Price Treatment

Panel B: Disease Treatment

Figure 2. Take-up Rate across Treatments

Note: This figure compares subjects' take-up rates of the diabetes test across different treatments with 90% confidence intervals.

Figure 3. Risk and Test Outcome Conditional on Taking the Test

Note: The left figure displays the average subjective risk across different treatments with 90% confidence interval conditional on taking the test. Subjective risk is the chance that individuals think of themselves as having diabetes. The right figure displays the average blood glucose level (GLU) of the two diabetes tests across different treatments conditional on taking the test.

Figure 4. Distribution in Test Outcome across Treatments

Note: This figure displays the frequency distributions of blood glucose level (GLU) of the two diabetes tests across different treatments conditional on taking the test.

Figure 5. The Relationship between Subjective Risk and the Take-up Decisions

Note: Individuals are divided into 5 groups based on their subjective risks of diabetes. They are in group 1 if subjective risk is 0 , group 2 if subjective risk is between 0 and 0.2 , and group 3,4 , or 5 if subjective risk is between 0.2 and $0.4,0.4$ and 0.6 , or above 0.6 , respectively.

Figure 6. Take-up Rate across Treatments by Percentiles of Subjective Risk of the Diseases

Note: Individuals are divided into 5 groups based on their subjective risks of the corresponding disease. They are in group 1 if subjective risk is 0 , group 2 if subjective risk is between 0 and 0.2 , and group 3,4 , or 5 if subjective risk is between 0.2 and $0.4,0.4$ and 0.6 , or above 0.6 , respectively. For individuals in the diabetes treatment, subjective risk is defined as the chance that they believe they will develop diabetes. For individuals in cancer treatment, it is defined as the chance that they believe they will develop cancer.

Figure 7. Total Value of Testing

Note: This figure shows the total value of testing when the test is free and there is low value of anticipation $(\delta<\Omega)$. The horizontal axis is p . The vertical axis is the total value of testing, which equals the benefit of testing minus the benefit of not testing.

Figure 8. Predictions for Price Treatment and Disease Treatment

Panel A. Price Treatment

Panel B. Disease Treatment

Note: Panel A illustrates the predictions from the price treatment when we vary the cost of testing based on Proposition 1. The horizontal axis is p . The vertical axis is the total value of testing. C is the cost of testing. Panel B illustrates the predictions from the disease treatment when the test is free.

Figure 9. Predictions for Price Treatment and Disease Treatment: No Anticipation

Panel A. Price Treatment

Panel B. Disease Treatment

Note: These figures show the predictions of the model with no anticipatory utility. Panel A illustrates the predictions from the price treatment when we vary the cost of testing based on Proposition 2. The horizontal axis is p . The vertical axis is the total value of testing. C is the cost of testing. Panel B illustrates the predictions from the disease treatment when the test is free.

Table 1. Summary Statistics and Randomization Check

	T0	T10	T30	Diabetes	Cancer
Panel A. Screening					
Take-up rate of the test	$\begin{aligned} & 0.66 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.37 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.20 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.86 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.89 \\ & (0.02) \end{aligned}$
Gender (male)	$\begin{aligned} & 0.37 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.38 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.43 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.45 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.39 \\ & (0.03) \end{aligned}$
Age	$\begin{aligned} & 53.29 \\ & (0.45) \end{aligned}$	$\begin{aligned} & 51.57 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 52.59 \\ & (0.48) \end{aligned}$	$\begin{aligned} & 52.61 \\ & (0.47) \end{aligned}$	$\begin{aligned} & 52.05 \\ & (0.43) \end{aligned}$
Education years	$\begin{aligned} & 7.28 \\ & (0.21) \end{aligned}$	$\begin{aligned} & 7.90 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 6.67 \\ & (0.22) \end{aligned}$	$\begin{aligned} & 7.04 \\ & (0.21) \end{aligned}$	$\begin{aligned} & 7.09 \\ & (0.19) \end{aligned}$
Marriage Status	$\begin{aligned} & 0.94 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.98 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.94 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.90 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.93 \\ & (0.02) \end{aligned}$
Household Size	$\begin{aligned} & 3.18 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 3.54 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 3.27 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 3.29 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 3.35 \\ & (0.09) \end{aligned}$
Whether monthly income is larger than 1000 RMB	$\begin{aligned} & 0.48 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.55 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.54 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.45^{* *} \\ & (0.03) \end{aligned}$
Panel C. Health Conditions and Behaviors					
Height (cm)	$\begin{aligned} & 159.46 \\ & (0.52) \end{aligned}$	$\begin{aligned} & 160.28 \\ & (0.54) \end{aligned}$	$\begin{aligned} & 160.17 \\ & (0.54) \end{aligned}$	$\begin{aligned} & 160.91 \\ & (0.55) \end{aligned}$	$\begin{aligned} & 160.43 \\ & (0.47) \end{aligned}$
Weight (kilogram)	$\begin{aligned} & 67.13 \\ & (0.74) \end{aligned}$	$\begin{aligned} & 65.57 \\ & (0.80) \end{aligned}$	$\begin{aligned} & 68.39 \\ & (0.82) \end{aligned}$	$\begin{aligned} & 67.36 \\ & (0.78) \end{aligned}$	$\begin{aligned} & 66.79 \\ & (0.66) \end{aligned}$
BMI ratio	$\begin{aligned} & 26.44 \\ & (0.29) \end{aligned}$	$\begin{aligned} & 25.49 \\ & (0.27) \end{aligned}$	$\begin{aligned} & 26.63 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 25.98 \\ & (0.27) \end{aligned}$	$\begin{aligned} & 25.96 \\ & (0.24) \end{aligned}$
Smoking (percentage)	$\begin{aligned} & 0.30 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.31 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.36 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.34 \\ & (0.03) \end{aligned}$
Drinking (percentage)	$\begin{aligned} & 0.35 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.31 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.33 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.42 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.41 \\ & (0.03) \end{aligned}$
Sleeping hours	$\begin{aligned} & 7.73 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 7.84 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 7.51 \\ & (0.12) \end{aligned}$	$\begin{aligned} & 7.74 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 7.85 \\ & (0.09) \end{aligned}$
Exercise frequency	$\begin{aligned} & 2.63 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 2.74 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 2.80 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 2.76 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 2.75 \\ & (0.08) \end{aligned}$
Subjective knowledge of diabetes	$\begin{aligned} & 0.31 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.28 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.30 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.29 \\ & (0.01) \end{aligned}$
Objective knowledge of diabetes	$\begin{aligned} & 0.47 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.01) \end{aligned}$	$\begin{aligned} & 0.46 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.46 \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.44 \\ & (0.01) \end{aligned}$
Ability to follow treatment	$\begin{aligned} & 1.44 \\ & (0.43) \\ & 0.12 \end{aligned}$	$\begin{aligned} & 1.14 \\ & (0.31) \\ & 0.11 \end{aligned}$	$\begin{aligned} & 1.40 \\ & (0.58) \\ & 0.10 \end{aligned}$	$\begin{aligned} & 0.84 \\ & (0.01) \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.83 \\ & (0.01) \\ & 0.10 \end{aligned}$

Subjective assessment of disease risk	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Panel D. Preference Coefficients					
Risk aversion	3.13	3.30	3.17	2.87	3.18
	(0.15)	(0.15)	(0.15)	(0.15)	(0.14)
Loss aversion	2.46	2.65	2.68	2.47	2.58
	(0.17)	(0.17)	(0.17)	(0.17)	(0.15)
Patience (includes present					
bias)	3.28	3.15	3.50	3.28	3.51
	(0.18)	(0.18)	(0.17)	(0.17)	(0.16)
Patience (not includes	3.16	2.98	3.47	3.22	3.49
present bias)	(0.18)	(0.18)	(0.18)	(0.17)	(0.16)
Monitoring	0.13	0.13	0.13	0.13	0.13
	(0.00)	(0.00)	(0.00)	(0.00)	(0.00)
Neuroticism	2.52	2.62	2.58	2.63	2.69
	(0.05)	(0.05)	(0.05)	(0.05)	(0.04)
Openness	4.67	4.57	4.70	4.52	4.52
	(0.06)	(0.06)	(0.05)	(0.07)	(0.06)
Observations	219	216	229	255	276

Note: We use * on the T30 variable to indicate whether the variables in $\mathrm{T} 0, \mathrm{~T} 10$, and T 30 are significantly different in the multivariate test, and whether variables in the cancer treatment are significantly different from those in the diabetes treatment.

Table 2. Subjective Risk and Test Outcomes Conditional on Taking the Test

	(1)	(2)
T10	Subjective risk	GLU
	-0.03	-0.08
T30	(0.03)	(0.30)
	-0.02	-0.30
Constant	(0.04)	(0.28)
	-0.12	14.76
Demographics (6)	(1.74)	(22.18)
Health Conditions and	Yes	Yes
Behaviors (10)		
Observations	Yes	Yes
R-squared	254	127
F-statistics: T10=T30	0.09	0.16

Note: Regressions in the table show average subjective risk and test outcomes across treatments conditional on taking the test. Robust standard errors in parentheses.

Table 3. Testing the Non-monotonic Effect of Subjective Risk on Take-up Decisions

	(1)	(2)	(3)
	T 0	T 10	T 30
Subjective risk	-0.02	-0.39	0.82^{*}
	(0.41)	(0.46)	(0.43)
Subjective risk^2	0.55	0.94	$-1.10^{* *}$
	(0.57)	(0.61)	(0.54)
Constant	$8.77^{* *}$	3.62	-2.28
	(4.04)	(4.97)	(3.76)
Demographics (6)	Yes	Yes	Yes
Health Conditions and			
Behaviors (10)	Yes	Yes	Yes
Observations	204	197	209
R-squared	0.10	0.09	0.12

Note: The regressions in the table show non-monotonic effect of subjective risk on takeup decisions in different treatment groups. Results are not affected by adding different categories of controls gradually. We control for six demographic variables-gender, age, education, marriage, household size, and monthly income - and 10 variables on health conditions and behaviors: height, weight, BMI, sleeping hours, drinking behavior, smoking behavior, exercise frequency, subjective/objective knowledge of diabetes, and the ability to comply with diabetes treatment. Robust standard errors in parentheses.

	(1)
Subjective Knowledge	Subjective risk
Objective Knowledge	$0.10^{* *}$
	(0.04)
Treatment Compliance Cost	0.05
	(0.04)
Income Level	-0.01
	(0.01)
Expenditure Level	-0.01
	(0.01)
Constant	0.02
	(0.02)
Demographics (6)	0.15
Observations	(0.12)
R-squared	Yes

Note: The regression in the table shows the effect of subjective and objective knowledge of diabetes, treatment compliance cost, income, and expenditure level on subjective risk. We control for six demographic variables: gender, age, education, marriage, household size, and monthly income. Robust standard errors in parentheses.

Table 5. Testing the Non-monotonic Effect of Subjective Risk on Take-up Decisions

Subjective risk	(1)	(2)	(3)	(4)
	Diabetes treatment	Cancer treatment	Diabetes treatment	Cancer treatment
	0.79**	0.74*	$1.06 * * *$	1.84***
	(0.33)	(0.39)	(0.39)	(0.37)
Subjective risk square	-0.69	-1.39*	-1.03*	-4.12***
	(0.52)	(0.78)	(0.59)	(0.70)
Controllable \times Subjective risk			-0.37	$-1.23 * * *$
			(0.75)	(0.46)
Controllable \times Subjective risk square			0.55	$3.15 * * *$
			(1.27)	(0.97)
Constant	1.89	0.39	0.07	0.30
	(2.08)	(3.74)	(2.30)	(3.96)
Demographics (6)	Yes	Yes	Yes	Yes
Health Conditions and				
Behaviors (10)	Yes	Yes	Yes	Yes
Observations	211	239	176	207
R -squared	0.10	0.10	0.13	0.15

Note: This table reports the non-monotonic effect of subjective risk on take-up decisions in different treatment groups. Results are not affected by adding different categories of controls gradually. We control for six demographic variables-gender, age, education, marriage, household size, and monthly income-and 10 variables on health conditions and behaviors: height, weight, BMI, sleeping hours, drinking behavior, smoking behavior, exercise frequency, subjective/objective knowledge of diabetes, and the ability to comply with diabetes treatment. Robust standard errors in parentheses.

Table 6. Structural Estimation

Parameter	Symbol	Value
Weight on anticipation	δ	0.48
utility		(0.12)
Cost of not taking any		
action when being sick	Ω	0.61
Cost of taking any action	Φ	(0.18)
when being healthy		0.47
Observations	N	(0.12)

Note: This table use the method of simulated moments to estimate model parameters with the sample from the price treatment. Standard errors in parentheses.

Table 7. Simulation

	\%Testing	Consumption Utility(U)	No of Subsidy from $(\Delta \mathrm{N})$	$\begin{aligned} & \text { lity change } \\ & \text { a Status quo } \\ & (\Delta \mathrm{U}) \end{aligned}$	Subsidy Efficiency ($\Delta \mathrm{U} / \Delta \mathrm{N}$)	Increase in Subsidy Efficiency
Panel A: Neoclassical Model:welfare based on consumption utility						
Status quo (T30)	62\%	730				
Full subsidy(T0)	89\%	846	575	116	0.20	
Target subsidy (50)	75\%	789	290	59	0.20	
Full mandate	100\%	837	645	107	0.17	
Target mandate (50)	80\%	779	298	49	0.16	
Panel B: Anticipation Model: welfare based on consumption utility						
Status quo (T30)	16\%	677				
Full subsidy(T0)	62\%	813	401	137	0.34	70\%
Target subsidy (50)	39\%	746	205	69	0.34	68\%
Full mandate	100\%	837	645	161	0.25	50\%
Target mandate (50)	54\%	745	298	68	0.23	39\%
Target subsidy: Information avoidance	53\%	779	238	102	0.43	
Panel C: Anticipation Model: welfare based on both consumption utility and anticipation utility						
Status quo (T30)	16\%	815				
Full subsidy(T0)	62\%	872	401	56	0.14	
Target subsidy (50)	39\%	846	205	30	0.15	
Full mandate	100\%	837	645	22	0.03	
Target mandate (50)	54\%	826	298	10	0.03	

Note: This table reports simulation results for neoclassical model with consumption utility as welfare criterion (Panel A), optimal expectations model with consumption utility as welfare criterion (Panel B) and optimal expectations model with both the consumption utility and anticipatory utility as the welfare criterion (Panel C).In all welfare calculations, we scale the utility by 1,000 to avoid very small utilities and improve presentation. We define subsidy efficiency to be the consumption utility changes per person receiving the subsidy, and use this to measure the cost effectiveness of the policy. For example, if a policy increases the utility from the status quo (T30) by ΔU and the number of persons receiving the subsidy is $\Delta \mathrm{N}$, the subsidy efficiency is $\frac{\Delta U}{\Delta N}$.

(For Online Publication Only)

Appendix 1. Diabetes Test

1. Random (also called Casual) Plasma Glucose Test
a) Procedure: This test is a blood check at any time of the day when you have severe diabetes symptoms.
b) Criteria: Diabetes is diagnosed at blood glucose of greater than or equal to $200 \mathrm{mg} / \mathrm{dl}(11 \mathrm{mmol} / \mathrm{l})$.
c) The test is not so good at diagnosing diabetes in people with mildly elevated blood sugar levels but it is good for those that have a high blood sugar level and may need treatment more urgently (http://www.diabetes.co.uk)
d) Price: $\$ 25$ according to CVS
e) Source: American Diabetes Association unless otherwise stated
2. Fasting Plasma Glucose (FPG):
a) Procedure: This test checks your fasting blood glucose levels. Fasting means after not having anything to eat or drink (except water) for at least 8 hours before the test. This test is usually done first thing in the morning, before breakfast.
b) Criteria: Diabetes is diagnosed at fasting blood glucose of greater than or equal to $126 \mathrm{mg} / \mathrm{dl}(7 \mathrm{mmol} / \mathrm{l})$.
c) It is often the first test done to check for prediabetes and diabetes.
d) Price: The cost of a fasting plasma glucose will usually cost $\$ 5$ to $\$ 40$. (howmuchisit.org)
e) Source: American Diabetes Association unless otherwise stated
3. Oral Glucose Tolerance Test (also called the OGTT)
a) Procedure: The OGTT is a two-hour test that checks your blood glucose levels before and 2 hours after you drink a special sweet drink. It tells the doctor how your body processes glucose.
b) Criteria: Diabetes is diagnosed at 2 hour blood glucose of greater than or equal to $200 \mathrm{mg} / \mathrm{dl}(11 \mathrm{mmol} / \mathrm{l})$
c) An OGTT is the only means of identifying people with Impaired Glucose Tolerance;

An OGTT is frequently needed to confirm or exclude an abnormality of glucose tolerance in asymptomatic people. (WHO)
d) Price: Seem to be around $\$ 140$
e) Source: American Diabetes Association unless otherwise stated
4. A1C test
a) Procedure: To measure a person's HbA 1 c level, a blood sample is taken from the patient's arm, and used to produce a reading. (http://www.diabetes.co.uk)

The A1C test measures your average blood glucose for the past 2 to 3 months. The advantages of being diagnosed this way are that you don't have to fast or drink anything.
b) Criteria: Diabetes is diagnosed at an A1C of greater than or equal to 6.5%.
c) The HbA1c test, also known as the haemoglobin A1c or glycated haemoglobin test, is an important blood test that gives a good indication of how well your diabetes is being controlled.

Together with the fasting plasma glucose test, the HbAlc test is one of the main ways in which type 2 diabetes is diagnosed.

HbA1c tests are not the primary diagnostic test for type 1 diabetes but may sometimes be used together with other tests. (http://www.diabetes.co.uk)
d) Price: Around $\$ 35$ (Walgreens and CVS pharmacy)
e) Source: American Diabetes Association unless otherwise stated
5. CEA (carcinoembryonic antigen) is a blood test commonly used to follow patients with known cancers. CEA is a glycoprotein (sugar protein) present in embryonic tissues and in extracts from normal colonic washings. The test should not be used as a cancer screening test of asymptomatic individuals. Although CEA levels are often elevated in patients with gastrointestinal malignancies (colon, pancreas, etc), patients with confirmed cancers frequently have normal levels (in the range of healthy individuals). Elevations in CEA levels may occur in patients without cancer. For example, elevated CEA levels may be observed in smokers as well as patients with a variety of non-malignant diseases. Therefore, levels, regardless of their values cannot be used as a diagnostic test for cancer. The greatest value of these tests is in detecting recurrence of malignancy (cancer) after treatment of the tumor. Finally, remember that the normal values of these tests differ from lab to lab. Values obtained from one lab cannot be directly compared to those obtained from another lab.

Source: The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins (http://pathology.jhu.edu/pc/bloodmarkers.php)

Appendix 2: Proofs on Propositions

Proposition 1. When $0<\delta+\delta v<\Omega, \quad p_{\text {low }}=\frac{C}{\Omega-\delta-\delta v}, \quad$ and $p_{h i g h}=\frac{\delta \Phi(1+\Omega+v)}{(\Phi+\Omega)(\delta+\delta v+\Phi)}+\frac{\Phi-C}{\delta+\delta v+\Phi}$
We show that $\frac{\partial p_{\text {low }}}{\partial C}>0$, and $\frac{\partial p_{\text {high }}}{\partial C}<0$.

Proof:
According to Propositions 1 in Oster et al. (2013), when choosing not to take the test, as $>p^{*}, \pi=\frac{\Phi}{\Phi+\Omega}$. For the cancer treatment, when $\mathrm{u}(1,1)=-v$, and $v>0, \pi=\frac{\Phi}{\Phi+\Omega_{c}}$ and $p^{*}=\frac{\Phi}{\Phi+\Omega_{c}}+\frac{\delta \Phi\left(1+\Omega_{c}\right)}{\left(\Phi+\Omega_{c}\right)^{2}}$. The cutoff point is the following

$$
\begin{gathered}
p_{\text {low }}=\frac{C}{\Omega-\delta-\delta v} \\
p_{\text {high }}=\frac{\delta \Phi(1+\Omega+\mathrm{v})}{(\Phi+\Omega)(\delta+\delta v+\Phi)}+\frac{\Phi-C}{\delta+\delta v+\Phi} \\
\frac{\partial p_{\text {low }}}{\partial C}=\frac{1}{\Omega-\delta-\delta v}>0 \\
\frac{\partial p_{\text {high }}}{\partial C}=-\frac{1}{\delta+\delta v+\Phi}<0
\end{gathered}
$$

Proposition 2. When $0<\delta+\delta v<\Omega, \quad p_{\text {low }}=\frac{C}{\Omega-\delta-\delta v}, \quad$ and $p_{\text {high }}=\frac{\delta \Phi(1+\Omega+\mathrm{v})}{(\Phi+\Omega)(\delta+\delta v+\Phi)}+\frac{\Phi-C}{\delta+\delta v+\Phi}$
We show that $\frac{\partial p_{\text {low }}}{\partial \Omega}<0, \frac{\partial p_{\text {low }}}{\partial \mathrm{v}}>0, \frac{\partial p_{\text {high }}}{\partial \Omega}<0$, and $\frac{\partial p_{\text {high }}}{\partial \mathrm{v}}<0$ when C is small.

Proof:

Similar to Proposition 1, the cutoff point is the following

$$
\begin{gathered}
p_{\text {low }}=\frac{C}{\Omega-\delta-\delta v} \\
p_{\text {high }}=\frac{\delta \Phi(1+\Omega+\mathrm{v})}{(\Phi+\Omega)(\delta+\delta v+\Phi)}+\frac{\Phi-C}{\delta+\delta v+\Phi} \\
\frac{\partial p_{\text {low }}}{\partial \Omega}=-\frac{C}{(\Omega-\delta-\delta v)^{2}}<0 \\
\frac{\partial p_{\text {low }}}{\partial \mathrm{v}}=\frac{\delta C}{(\Omega-\delta-\delta v)^{2}}>0
\end{gathered}
$$

$$
\begin{gathered}
\frac{\partial p_{\text {high }}}{\partial \Omega}=\frac{\delta \Phi(\Phi+\Omega)(\delta+\delta v+\Phi)-\delta \Phi(1+\Omega+\mathrm{v})(\delta+\delta v+\Phi)}{(\Phi+\Omega)^{2}(\delta+\delta v+\Phi)^{2}} \\
=\frac{\delta \Phi(\delta+\delta v+\Phi)[(\Phi+\Omega)-(1+\Omega+\mathrm{v})]}{(\Phi+\Omega)^{2}(\delta+\delta v+\Phi)^{2}} \\
=\frac{\delta \Phi(\delta+\delta v+\Phi)(\Phi-1-\mathrm{v})}{(\Phi+\Omega)^{2}(\delta+\delta v+\Phi)^{2}}<0 \\
= \\
=\frac{\frac{\delta \Phi(\Phi+\Omega)[(\delta+\delta v+\Phi)-\delta(1+\Omega+\mathrm{v})]}{(\Phi+\Omega)^{2}(\delta+\delta v+\Phi)^{2}}-\frac{\delta(\Phi-C)}{(\delta+\delta v+\Phi)^{2}}}{(\Phi+\Omega)^{2}(\delta+\delta v+\Phi)^{2}}-\frac{\delta(\Phi-C)}{(\delta+\delta v+\Phi)^{2}}=\frac{\delta[\Phi(\Phi-\delta \Omega)-(\Phi+\Omega)(\Phi-C)]}{(\Phi+\Omega)(\delta+\delta v+\Phi)^{2}} \\
\quad=\frac{\delta[C \Omega-\Phi(\Omega-\mathrm{C})-\Phi \delta \Omega]}{(\Phi+\Omega)(\delta+\delta v+\Phi)^{2}}
\end{gathered}
$$

Thus, $\frac{\partial p_{h i g h}}{\partial \mathrm{v}}=\frac{\delta[C \Omega-\Phi(\Omega-\mathrm{C})-\Phi \delta \Omega]}{(\Phi+\Omega)(\delta+\delta v+\Phi)^{2}}<0$ if $C<\frac{\Phi \Omega(1+\delta)}{\Phi+\Omega}$

Proposition 3. When $\delta=0, p_{\text {low }}=\frac{C}{\Omega-\delta}$, and $p_{\text {high }}=\frac{\delta \Phi(1+\Omega)}{(\Phi+\Omega)(\delta+\Phi)}+\frac{\Phi-C}{\delta+\Phi}$, we show that $\frac{\partial p_{\text {low }}}{\partial C}>0, \frac{\partial p_{\text {low }}}{\partial \Omega}<0, \frac{\partial p_{\text {high }}}{\partial C}<0$, and $\frac{\partial p_{\text {high }}}{\partial \Omega}=0$.

Proof:

$$
\begin{gathered}
p_{\text {low }}=\frac{C}{\Omega} \\
p_{\text {high }}=\frac{\Phi-C}{\Phi}=1-\frac{C}{\Phi} \\
\frac{\partial p_{\text {low }}}{\partial C}=\frac{1}{\Omega}>0 \\
\frac{\partial p_{\text {low }}}{\partial \Omega}=-\frac{C}{\Omega^{2}}<0 \\
\frac{\partial p_{\text {high }}}{\partial C}=-\frac{1}{\Phi}<0
\end{gathered}
$$

$$
\frac{\partial p_{h i g h}}{\partial \Omega}=0
$$

Discussion about objective probability (p) and subjective probability (π)

In our empirical analysis, we measure subjective probabilities of have diabetes or cancer and analyze the relationship between testing and subjective probabilities. Strictly speaking the subject probabilities correspond to π in the model. According to Appendix Propositions 1 in Oster et al. (2013), when action space is continuous, $\pi=\frac{2 \mathrm{p} \Omega-\delta(\Omega+1)}{2 \Omega(1-\delta)}$. Thus, π is an increasing function of true probability p. Thus, high π implies high p, our predictions $1-3$ remain the same with p replaced by π.

Appendix 3. Appendix Figures and Tables

Figure A1. Distribution of Subjective Risk

Note: Panel A shows the distribution of subjective risk for diabetes. Panel B shows the distribution of subjective risk for cancer.

Figure A2. Predictions of Neoclassical Model and Anticipation Utility Model

Note: The figure shows the predictions of the model with Neoclassical Model and Anticipation Utility Model when testing cost $\mathrm{C}>0$. The horizontal axis is p . The vertical axis is the total value of testing. The range between $p_{\text {low }}$ and $p_{\text {low }}$, and the range between $p_{\text {higho }}$ and $p_{\text {high }}$ indicate those who exhibit information avoidance behavior due to anticipation utlity. Both median-low and median-high risk individuals tend to avoid the test under anticipation utility model.

Table A1.
Constructing key variables in the summary statistics Table 1 from the survey questions

Panel A. Screening	
Take up rate of the test	$=1$ if take the test (from question 80)
Panel B. Demographics	
Gender (male)	$=1$ if male (from question 5)
Age	=2014-birthyear (from question 6)
Education years	(from question 8)
Marriage Status	$=1$ if married (from question 10)
Household Size	\# of household members (from question 11)
	$=1$ if monthly income $\geqslant 1000$ RMB (from
Monthly income ($\geqslant 1000$ RMB)	question 18)
Panel C. Health Conditions and Behaviors	
Height (cm)	(from question 89)
Weight (kilogram)	(from question 90)
BMI ratio	$=1000 *^{*}$ weight $/\left((\text { height })^{\wedge} 2\right)$
Smoking (percentage)	$=1$ if smokes (from question 22)
Drinking (percentage)	$=1$ if drinks (from question 23)
Sleeping hours	(from question 24)
	Larger if exercises less frequently (from
Exercise frequency	question 44)
	(from question 52), higher value means more
Subjective knowledge of diabetes	knowledge
	=average of answers to question 52.1-question
Objective knowledge of diabetes	57, higher value means more knowledge
	$=$ average of answers to question 58-question
	60, higher value means more able to follow
Ability to follow treatment	treatment requirements

Subjective assessment of disease
risk

Panel D. Preference Coefficients
Risk aversion

Loss aversion

Patience (includes present bias)

Patience (not includes present bias)

Monitoring
Neuroticism

Openness
(from question 67), high value means more risk

Report the switching point from (2) to (1).
Larger switching point implies less risk aversion (from question 70)

Report the switching point from (1) to (2). Larger switching point implies less loss aversion (from question 71)

Report the switching point from (1) to (2).
Larger switching point implies less patience (from question 72)

Report the switching point from (1) to (2).
Larger switching point implies less patience
(from question 73)
=average of answers to question 75.1-question
77.2, higher value means more tendency to pay attention to and avoid potential risk, equivalent to less information avoidance
=average of answers to question 78.1-question
78.7 and question 78.9, higher value means
more anxiety
(from question 78.8), higher value means more stable behavior and less risk taking

Table A2
Robustness: the Non-monotonic Effect of Subjective Risk on Take-up Decisions

	(1)	(2)	(3)
VARIABLES	T0	T10	T30
2.new_percentile	$-0.31^{* *}$	-0.05	-0.05
	(0.16)	(0.13)	(0.10)
3.new_percentile	0.13	-0.02	0.15
	(0.11)	(0.12)	(0.11)
4.new_percentile	0.07	0.04	0.15
	(0.10)	(0.13)	(0.12)
5.new_percentile	0.23^{*}	0.20	-0.08
	(0.12)	(0.19)	(0.10)
Constant	$10.42^{* *}$	2.98	-2.69
	(4.09)	(5.08)	(3.80)
Observations	204	197	209
R-squared	0.13	0.08	0.13
p-FTest2v3	0.0149	0.882	0.179
p-FTest3v4	0.645	0.749	0.968
p-FTest4v5	0.276	0.460	0.108

Note: The regressions in the table show non-monotonic effect of subjective risk on take-up decisions in different treatment groups. We control for six demographic variables-gender, age, education, marriage, household size, and monthly income-and 10 variables on health conditions and behaviors: height, weight, BMI, sleeping hours, drinking behavior, smoking behavior, exercise frequency, subjective/objective knowledge of diabetes, and the ability to comply with diabetes treatment. Robust standard errors in parentheses.

Appendix 4. Surveys

Village: \qquad Interviewee ID: \qquad Interviewer: \qquad Date: \qquad Time: \qquad

0 . Is the questionnaire completed?
0.1 Why the questionnaire is incomplete:

1) The interviewee refused to answer. 2) The interviewee was diagnosed with diabetes. 3) Other interviewee-related reasons 4) Mistakes of the interviewer
1. Have you been diagnosed with the following diseases? \qquad
1) Hypertension
2) Diabetes
3) Coronary disease
4) Stroke
5) Tumor
6) Psychiosis
7)

Others \qquad 8) None
(The survey only continues when diabetes is not mentioned in this question.)

Part One: General Information

2. Name \qquad
3. Address \qquad
4. Phone Number \qquad
5. Gender: 1) Male 2) Female
6. Date of Birth: \qquad Year \qquad Month \qquad Day *Solar Calendar
6.1 Type of Calendar: 1) Solar calendar 2) Lunar calendar
7. Highest achieved education:
1) Primary school or lower
2) Junior high school
3) Senior high school
4) Secondary vocational school 5) Junior college or bachelor degree 6) Master or higher
8. How many years have you been in school? \qquad
9. Besides your formal school education mentioned above, what types of professional education have you received? \qquad
10. Marital Status:
1) Single
2) Married
3) Divorced
4) Widowed
5) Separated
11. How many people in your family? \qquad Number of kids \qquad
12. How much does your family spend on kids' tuition per year (yuan)? \qquad
13. The level of your kids' living expenses per month (yuan):
1) Below 500
2) 500-1000
3) $1000-2000$
4) 2000-3000
5) Above 3000
14. How much does your family spend on the elderly per month (yuan)?
1) Below 500
2) 500-1000
3) 1000-2000
4) Above 2000
15. Cultivated Area ($\mathrm{Mu} \approx 0.164$ Acre) \qquad
16. Current Career:
1) Working for enterprise, government and institution
2) Agriculture
3) Start own business (including cab drivers)
4) Retired
5) Part-time jobs
6) Students
7) Others \qquad 8) None
17. How much time do you spend on farm work a year? \qquad months \qquad days
18. Your monthly income (yuan):
1) Below 500
2) 500-999
3) $1000-1999$
4) 2000-2999
5) 3000-3999
6) 4000-4999
7)

Above 5000
19. The total income for your family last year (yuan):

1) Below 5,000
2) $5,000-9,999$
3) $10,000-25,000$
4) $25,000-50,000$
5) $50,000-75,000$
75,000-100,000
6) Above 100,000
7) Don't Know
8)
20. Planned Usage of your Savings: Use 1 \qquad Use 2 \qquad
1) For children
2) Medical treatment
3)For elders
3) For retirement 5)Building

Maintain a living
7) For investment
8) For your own marriage
9) Others \qquad
21. Have you joined the following insurance? \qquad

1) New Rural Cooperative Medical System
2) Medical Insurance for Urban Workers
3) Commercial Health Insurance 4) None

Part Two: Health Condition and Living Habit
22. Do you smoke?

1) Never
2) Used to smoke occasionally, but now quit
3) Used to smoke every day, but now quit
4) Smoke occasionally now
5) Smoke every day now
23. Do you drink?
1) Never
2) Used to drink occasionally, but now quit
3) Used to drink frequently (3 or more times
a week), but now quit
4) Drink occasionally now
5) Drink frequently (3 or more times a week) now
24. You currently sleep \qquad hours a day.
25. You typically go to bed at \qquad o'clock at night.
26. It usually takes you \qquad minutes to fall asleep after you go to the bed.
27. You usually get up \qquad o'clock in the morning.
28. Do you often wake up at midnight or wake up too early in the morning? 1)
1) Yes
2) No
29. Do you dream when you are asleep?
1) Very often
2) Occasionally
3) Never
30. How well do you sleep?
1) Good
2) Normal
3) Poor
31. Do you sleep at noon?
1) Yes
2) No
31.1 (If yes) How long do you sleep? \qquad Minutes
31.2 In what specific circumstances will you sleep at noon? \qquad
32. Do you rely on sleeping pills?
1) Yes
2) No
33. Do you snore?
1) Yes
2) No 999) Don't know
34. Your diet structure:
1) Mostly meat
2) Half meat, half vegetables
3) Mostly vegetables
4) Only vegetables
35. What part of eggs do you usually eat?
1) Egg white
2) Yolk
3) The whole egg
4) Don't eat eggs at all
36. How often do you drink milk?
1) Never 2) Rarely (less than 1 to 3 times per month) 3) sometimes (once or twice a week) Often (3-6 times a week) 5) Very often
37. How much staple food do you eat? \qquad liang (1 liang $=50$ grams)
38. How often do you eat nuts (such as melon seeds, peanuts, chestnuts, walnuts and so on)?
1) Never
2) Rarely (less than 1 to 3 times per month)
3) sometimes (once or twice a week)
4) Often (3-6 times a week) 5) Very often
39. How much vegetable oil does your family eat a month? \qquad jin (1 jin = 500 grams)
40. How much lard oil does your family eat a month? \qquad jin ($1 \mathrm{jin}=500$ grams)
41. How much non-starchy vegetables does your family eat? \qquad times per \qquad (unit: day, week, month, year), with the average amount of \qquad grams.
42. So far, what's your peak weight? \qquad kilograms
43. So far, your weight reaches its peak at your age of \qquad .
44. Do you exercise very often?
1) At least 5 times a week
2) 1-3 times a week
3) 1-3 times a month 4) Less than once a month
45. How long does your exercise last?
1) Less than half an hour
2) Half an hour - an hour
3) At least an hour
46. What are your primary methods of exercise?
1) Stroll
2) Brisk walking
3) Jogging
4) Ball games
5) Swimming
6) Dancing outdoors
7)

Equipment 8) Others \qquad 9) None
47. What type of medicine do you prefer if you don't feel well?

1) Chinese medicine 2) Western medicine 999) Don't know
48. Which hospital would you go if you don't feel well?
1) Community hospitals
2) Hospitals in Pinggu
3) Hospitals in Beijing
4) Don't know
49. Do you trust doctors?
1) Don't trust them at all
2) Don't trust them to some degree
3) Normal
4) Trust them to some degree 5) Trust them very much
50. Have you heard of the harm of diabetes? 1) Yes 2) No
51. In which ways did you hear about diabetes?
1) Radio
2) TV advertising
3) Newspapers and magazines
4) Community activities
5)

Relatives and friends 999) Don't know
52. Your knowledge on diabetes:

1) Very familiar 2) Familiar 3)Know a little 4)Know little 5)Know nothing
52.1 Do you think obesity will increase the probability of having diabetes?
2) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
52.2 Do you think height will affect the probability of having diabetes?
3) Yes (has some effect)
4) No (has almost no effect) 999) Don’t know
52.3 Do you think diet will affect the probability of having diabetes?
5) Yes (has some effect)
6) No (has almost no effect) 999) Don't know
52.4 Do you think lack of exercises will increase the probability of having diabetes?
7) Yes (has some effect)
8) No (has almost no effect) 999) Don’t know
52.5 Do you think aging will increase the probability of having diabetes?
9) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
52.6 Do you think blood type will affect the probability of having diabetes?
10) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
52.7 Do you think hypertension will increase the probability of having diabetes?
11) Yes (has some effect)
12) No (has almost no effect)
13) Don’t know
53. Do you think diabetes can be inherited?
1) Yes
2) No
3) Don't know
54. What do you think are the symptoms of diabetes?
1) excessive hunger, excessive thirst, frequent urination and weight loss
2) excessive hunger, excessive thirst, frequent urination and fatigue
3) excessive hunger, excessive thirst, frequent dreams and weight loss 999) Don't know
55. Diabetes is:
1) Curable 2) Incurable 999) Don't know
56. Which of the followings can be effective in diabetes treatment?
1) Diet therapy
2) Medical therapy
3) Psychological therapy
4) Sports Therapy 999) Don't know
57. Do you think diabetes will lead to hypertension, Coronary disease or eye diseases:
1) Yes
2) No
3) Don't know
58. How difficult is that you keep diet, eat less high sugar food as fruit and sweetmeat?
1) Totally impossible
2) Very difficult
3) A little difficult
4) Basically possible
5) Very possible
59. How difficult is it for you to take medicine every day in order to keep blood glucose level?
1) Impossible
2) Very difficult
3)A little difficult
3) Basically possible
4) Very possible
60. How difficult is it for you to keep exercising and weight every day in order to keep blood glucose level?
1) Impossible
2) Very difficult
3)A little difficult
3) Basically possible
4) Very possible
61. Do you take physical examinations initiatively?
1) Yes
2) No
62. What's the last time you took a blood sugar test?
1) Never
2) More than 1 year ago
3) Less than 1 year ago
4) Less than 1 month ago
5) Less than half a year ago 6) Less than 3 months ago
62.1 What's the results of your last blood sugar test?
6) Normal blood sugar
7) Low blood sugar
8) Diabetes
9) Pre-diabetes
10) Forgot it
11) High blood sugar but not diagnosed with diabetes
63. Is there anyone among your grandparents, parents, children and siblings diagnosed with diabetes?
1) Yes 2) No 999) Don't know
64. Is there any of your relatives diagnosed with diabetes?
1) Yes 2) No 999) Don't know
65. Is there any of your friends and neighbors diagnosed with diabetes?
1) Yes 2) No 999) Don't know
66. (If female) Have you given birth to a giant baby? 1) Yes 2 2) No 999) Forgot it
67. Your subjective possibilities to have diabetes \qquad (interviewers distribute 10 little balls to interviewees)
68. What do you think is the difference between the diabetes tests that you have access to everyday and the blood tests in large hospitals?
1) The results are more accurate in large hospitals
2) No difference 999) Don't know
69. Do you think cancers can to some degree be controlled?
1) Yes
2) No 999) Don't know

Part Three: Preference
70. Please choose one from the two options in each line.

Option 1 Option 2 Your choice:
1 or 2 ?
A Gain $¥ 50$ Throw the coin. If head shows up, you will be paid $¥ 200$, or you will be paid nothing.

B Gain $¥ 80$ Throw the coin. If head shows up, you will be paid $¥ 200$, or you will be paid nothing.

C Gain $\neq 100$ Throw the coin. If head shows up, you will be paid $¥ 200$, or you will be paid nothing.

D Gain $¥ 120$ Throw the coin. If head shows up, you will be paid $¥ 200$, or you will be paid nothing.

E Gain $¥ 150$ Throw the coin. If head shows up, you will be paid $¥ 200$, or you will be paid nothing.
71. Please choose one from the two options in each line.

Group Option 1 Option 2 Your choice:
1 or $2 ?$

A Gain $¥ 10$ Throw the coin. If head shows up, you will be paid $¥ 60$, or you will lose $¥ 50$.

B No Win No Lose Throw the coin. If head shows up, you will be paid $¥ 60$, or you will lose $\neq 50$.

C Lose $¥ 10$ Throw the coin. If head shows up, you will be paid $¥ 60$, or you will lose $¥ 50$.

D Lose $\nexists 20$ Throw the coin. If head shows up, you will be paid $¥ 60$, or you will lose $¥ 50$.

E Lose $\neq 30$ Throw the coin. If head shows up, you will be paid $\neq 60$, or you will lose $\neq 50$.

F Lose $\neq 40$ Throw the coin. If head shows up, you will be paid $¥ 60$, or you will lose $\nsucceq 50$.
72. Please choose one from the two options in each line.

Option 1 Option 2 Your choice: 1 or 2 ?
A $\not ¥ 1000$ at present $\quad \neq 1063$ one year later

B $\quad \neq 1000$ at present $\quad \neq 1188$ one year later

C $\not ¥ 1000$ at present $\quad ¥ 1313$ one year later

D $\quad \neq 1000$ at present $\quad ¥ 1437$ one year later

E $\quad \neq 1000$ at present $\quad ¥ 1563$ one year later
F $¥ 1000$ at present $\quad ¥ 1688$ one year later73. Please choose one from the two options in each line.

Option 1 Option 2 Your choice: 1 or 2?
A $¥ 10002$ years later $¥ 10633$ years later
B $\quad ¥ 10002$ years later $¥ 11883$ years later
C $¥ 10002$ years later $¥ 13133$ years later
D $¥ 10002$ years later $¥ 14373$ years later
E $¥ 10002$ year slater $¥ 15633$ years later
F $¥ 10002$ year slater $¥ 16883$ years later
74. Assuming that you got 4 travelling coupons, and each coupon can give you one free travel experience. The coupons are effective from tonight, and will expire in 2 years. Please answer the following questions.
74.1 If you have enough time, in the most ideal circumstances, how would you distribute the coupons?

1) Use 4 coupons in the first year, and 0 in the second year.
2) Use 3 coupons in the first year, and 1 in the second year.
3) Use 2 coupons in the first year, and 2 in the second year.
4) Use 1 coupons in the first year, and 3 in the second year.
5) Use 0 coupons in the first year, and 4 in the second year.
74.2 If you have enough time, and based on your most accurate predict of yourself, how do you think you will distribute the coupons in reality?
6) Use 4 coupons in the first year, and 0 in the second year.
7) Use 3 coupons in the first year, and 1 in the second year.
8) Use 2 coupons in the first year, and 2 in the second year.
9) Use 1 coupons in the first year, and 3 in the second year.
10) Use 0 coupons in the first year, and 4 in the second year.
74.3 If you can get the coupons in two of the following ways, which one would you prefer?
11) 4 coupons at once
12) 4 coupons at once but based on your ideal distribution, some of the coupons can only be used in the second year.
74.4 Assuming that the 4 coupons will become effective after 1 year and period of validity is 2 years, how to distribute the coupons
how would you distribute the coupons?
13) Use 4 coupons in the second year, and 0 in the third year.
14) Use 3 coupons in the second year, and 1 in the third year.
15) Use 2 coupons in the second year, and 2 in the third year.
16) Use 1 coupons in the second year, and 3 in the third year.
17) Use 0 coupons in the second year, and 4 in the third year.
75. You are driving (as a passenger) with an inexperienced and uncertain driver. The weather is very bad, and there is a lot of snow and ice on the road surface.
75.1 (Strategy A) During the process, you will
1) Pay no attention to the driving and road conditions
2) Pay some attention to the driving and road conditions
3) Pay close attention to the driving and road conditions
75.1 (Strategy B) If beautiful music is played in the car, you will
4) Cannot focus on the music, but pay close attention to the driving and road conditions
5) Sometimes listen to the music, and sometimes pay attention to the driving and road conditions
6) Focus on the music and pay no attention to the driving and road conditions
76. For some time, you have complaints about headaches and dizziness. You visit your doctor. The doctor is suspicious about your complaints and sends you to the hospital to undergo an aversive examination.
76.1 (Strategy A) Before taking the examination, you will
1) Not search for any information related to the examination
2) Feel good if there is some related information, and doesn't matter if there isn't any
3) Have to find some information related to the examination
76.2 (Strategy B) Before taking the examination, you will
4) Keep thinking about the examination even when doing something else
5) Sometimes think about the examination when doing something else
6) Totally forget the examination when doing something else
77. Late at night, you walk through a deserted neighborhood of a city. Suddenly, a group of dubious looking people approach you from a side-road.
77.1 (Strategy A) You will
1) Keep walking without paying attention to their moves
2) Occasionally take a look at their moves
3) Pay close attention to their moves
77.2 (Strategy B) You will think
4) The reality is as dangerous as it seems
5) The reality may not be as dangerous as it seems
6) The reality is not as dangerous as it seems
78. The Big Five Inventory (BFI)

Here are a number of characteristics that may or may not apply to you. Please write a number next to each statement to indicate the extent to which you agree or disagree with that statement.

Disagree Strongly-1, Disagree a little-2, Neither agree nor disagree-3, Agree a little-4 Agree Strongly5
78.1 Is depressed, blue

1) Disagree strongly
2) Disagree a little
3) Neither agree nor disagree
4) Agree a little
5) Agree strongly
78.2 Is relaxed, handles stress well
6) Disagree strongly
7) Disagree a little
8) Neither agree nor disagree
9) Agree a little
10) Agree strongly
78.3 Worries a lot
11) Disagree strongly
12) Disagree a little
13) Neither agree nor disagree
14) Agree a little
15) Agree strongly
78.4 Is emotionally stable, not easily upset
16) Disagree strongly
17) Disagree a little
18) Neither agree nor disagree
19) Agree a little
20) Agree strongly
78.5 Can be moody
21) Disagree strongly
22) Disagree a little
23) Neither agree nor disagree
24) Agree a little
25) Agree strongly
78.6 Remains calm in tense situations
26) Disagree strongly
27) Disagree a little
28) Neither agree nor disagree
29) Agree a little
30) Agree strongly
78.7 Gets nervous easily
31) Disagree strongly
32) Disagree a little
33) Neither agree nor disagree
34) Agree a little
35) Agree strongly
78.8 I would feel afraid if I had to travel in bad weather conditions.
36) Disagree strongly
37) Disagree a little
38) Neither agree nor disagree
39) Agree a little
40) Agree strongly
78.9 When it comes to physical danger, I am very fearful.
41) Disagree strongly
42) Disagree a little
43) Neither agree nor disagree
44) Agree a little 5) Agree strongly

Part Four: Take-up Decisions and Physical Examinations
79. The interviewee is asked to draw lots, and the number is recorded without any explanation.

1) Free
2) 10 yuan
3) 30 yuan
80. Are you willing to take the diabetes test?
1) Yes 2) No
[If the interviewee is willing to take the test but don't have enough money, ask this question.]
80.1 Are you willing to take the diabetes test after you fetch the money back home?
2) No, and give up the test. 2) Yes, but change the mind at home 3) Yes, and successfully take the test
81. Why? \qquad
[If the interviewee is willing to take the test, ask the following questions. If not, move on to Part Five
directly.]
82. Are you on an empty stomach? 1) Yes 2) No
[Ask the individuals on an empty stomach to take OGTT and A1C tests. If they don't want to wait for 2 hours, tell them OGTT results will be more accurate. If they still don't want to wait, bring them to take Random Plasma Glucose Test and A1C test. Ask the individuals who are not on an empty stomach to take Random Plasma Glucose Test and A1C test.]
83. Is the interviewee willing to wait 2 hours for OGTT test? 1) Yes 2) No
[Interviewers fill out the following questions by themselves.]
84. How cooperative is the interviewee?
1) Great 2) Good 3) Standard 4) Poor
85. How do you think about this interview
1) Reliable
2) Mostly reliable
3) Not reliable
86. The date of the survey: Year: \qquad Month: \qquad Date: \qquad
87. Signature of the interviewer: \qquad
88. Time the interview end: \qquad
Part Five: Physical Examinations
89. Your Stature \qquad cm
90. Your Weight \qquad kg
91. Your Waistline \qquad cm
92. Your Hipline \qquad cm
93. Your Blood Pressure: Systolic Pressure \qquad mmHg Diastolic Pressure \qquad mmHg

The survey of Disease Treatment is the same, besides that the following questions are added to Part Two and some adjustment in Part Four.

Part Two: Health Condition and Living Habit

69.1 Do you think common cancer can be controlled?

1) Yes (has some effect) 2) No (has almost no effect) 999) Don't know
69.2 The treatment to which disease do you think will be more expensive?
2) Diabetes
3) Cancer
4) Almost the same
5) Don’t know
69.3 Your subjective possibilities of having cancer \qquad (interviewers distribute 10 little balls to interviewees)
69.4 Interviewers introduce how diabetes blood test and CEA test works. 1) Yes 2) No
69.5 Do you think diet will affect the probability of having cancer?
6) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
69.6 Do you think height will affect the probability of having cancer?
7) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
69.7 Do you think smoking will increase the probability of having cancer?
8) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
69.8 Do you think lack of exercise will increase the probability of having cancer?
9) Yes (has some effect) 2) No (has almost no effect) 999) Don't know
69.9 Do you think a relative having cancer will affect the probability of having cancer?
10) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
69.10 Do you think blood type will affect the probability of having cancer?
11) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
69.11 Do you think enteritis will increase the probability of having cancer?
12) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know
69.12 Do you think aging will increase the probability of having cancer?
13) Yes (has some effect) 2) No (has almost no effect) 999) Don’t know

Part Four: Take-up Decisions and Physical Examinations
79. The interviewee is asked to draw lots, and the number is recorded without any explanation

1) Diabetes treatment
2) Cancer treatment
[If choose 1), skip 80.2; If choose 2), skip 80.1]
80.1 Are you willing to use the existing blood sample to test whether you have diabetes?
3) Yes 2) No
80.2 Are you willing to use the existing blood sample to test whether you have cancer?
4) Yes 2) No
81. Why? \qquad
82. If you could choose to take one of the tests for free, which one would you prefer?
1) Diabetes test 2) Cancer test 3) Neither or both

[^0]: ${ }^{1}$ We would like to thank Hunt Allcott, Daniel Benjamin, Eric Finkelstein, Teck-Hua Ho, Botond Kőszegi, Agus Salim, Shyong Tai, and participants in seminars at the National University of Singapore for helpful comments. This work was carried out with the aid of a research grant from the NUS Initiative to Improve Health in Asia (NIHA) coordinated by the Global Asia Institute of the National University of Singapore and supported by the Glaxo Smith Kline-Economic Development Board (Singapore) Trust Fund. Juanjuan Meng acknowledges financial support from the National Natural Science Foundation of China (Grant No. 71822301 and Grant No. 71471004); Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0040); (Solareast Corporation) Guanghua Research Fellow; and the Key Laboratory of Mathematical Economics and Quantitative Finance (Peking University). We thank Xinyao Qiu and Fuyang Zhao for their excellent work as research assistants. We also thank Jianghan Gu, Weisi Wang, Weiting Yuan, and Yufei Zhang for their efforts in collecting the survey data in China, and Xiangshuang Kong in particular for his help in facilitating the field work.
 ${ }^{1}$ Capital Medical University Beijing, Pinggu Hospital; email: doctorlyf@126.com
 ${ }^{2}$ Guanghua School of Management, Peking University; email: jumeng@gsm.pku.edu.cn
 ${ }^{3}$ Department of Economics, National University of Singapore; email: songcc02@gmail.com
 ${ }^{4}$ Department of Informatics, University of California, Irvine; email: kai.zheng@uci.edu

[^1]: ${ }^{1} 1 \mathrm{USD}=6.6 \mathrm{RMB}$ in October 2017. A price of 30 RMB is comparable to the market price.
 ${ }^{2}$ If we assume that individuals can also take other actions of the same treatment quality at the formal medical system without taking the medical screening, then the neoclassical model predicts that high-risk individuals are less likely to take the test. See Section 4.3 for a detailed discussion.

[^2]: ${ }^{3}$ There are a couple of other alternative explanations for the low take-up rate for medical tests. One explanation for the general tendency to avoid the test, based on the neoclassical model, is the high price elasticity (Thornton, 2008); another behavioral explanation is procrastination generated by present bias. However, neither of the two explanations would predict that high-risk individuals are more likely to avoid the test. Our experimental design also excludes procrastination, because all individuals have already paid the upfront cost of being onsite.

[^3]: ${ }^{4}$ Information avoidance in the setting of self-confidence can also be explained by the model of self-deception with endogenous memory (Bénabou and Tirole 2002). In this model, the agent weighs the benefits of preserving his effort motivation against the risk of becoming overconfident, and might choose to avoid bad news to conserve the self-confidence necessary to motivate their action.
 ${ }^{5}$ Diabetes mellitus is a group of metabolic diseases in which high blood sugar levels are present over a prolonged period. The chronic hyperglycemia of diabetes is associated with long-term dysfunction, damage, and failure of various organs, especially the eyes, kidneys, nerves, heart, and blood vessels.

[^4]: ${ }^{6}$ Belief-based models may predict particular preferences toward the resolution of uncertainty. For instance, decision makers in Kőszegi and Rabin's (2009) study preferred quicker resolution of uncertainty-i.e., more accurate information. Since the RPG is less accurate than the other two, one might wonder whether the choice of test helps to distinguish various models. However, this is very likely in our setting, because participants were not given information about accuracy, and the costs of different tests also differ.

[^5]: ${ }^{7}$ The price of the CEA test in the same hospital is 40 RMB.
 ${ }^{8}$ In theory, one can predict the diabetes risk from health measures such as BMI, blood pressure, and smoking habit but such prediction is likely to be highly inaccurate due to the relative small sample and the fact that diabetes are affected by lifestyle which is difficult to predict precisely. We have tried to estimate the relationship between various health/demographic measures and the tested outcome using the disease treatment, perform out-of-sample prediction using the diabetes treatment, and finally compare the predicted level with the actual level to test the accuracy of the prediction. We have tried several specifications to predict objective risk: (1) use logistical model to predict actual discrete test outcome; (2) use OLS model to predict blood sugar levels (3) use machine learning (Lasso and Ridge) to predict blood sugar level. Under all the specifications, the estimation R squares are low and the prediction R squares are even negative, suggesting that the predicted objective risk matches the actual outcome much worse than the sample average. It is not sensible to do any analysis with such poor prediction.

[^6]: .${ }^{9}$ Of the 92 individuals, 33 were willing to wait for two hours and take the OGTT, which requires two blood tests. The first is exactly the same as the fasting plasma glucose test, and the second test is taken two hours after drinking a mixture of glucose and water. We use the first test results for these 33 individuals for analysis, which yields exactly the same diagnosis outcome as using the results from both tests.

[^7]: ${ }^{10}$ The right figure reports results for the overall sample, including the fasting and non-fasting samples. For individuals in the fasting state, GLU indicates fasting blood glucose level. For individuals in the non-fasting state, GLU indicates random blood glucose level. For simplicity, we pool the outcomes of the two tests here; however, results remain the same if the two tests are analyzed separately.

[^8]: ${ }^{11}$ This approach follows the spirit of the literature of optimal policy in which agents have behavioral biases (Liebman and Zeckhauser 2008; Allcott and Taubinsky 2015; Beshears et al. 2017). In this literature, a policy maker considers behavioral biases as mistakes and calculates welfare only based on the neoclassical utility function. It is debatable whether anticipation can be considered a "mistake," since it influences an individual's feelings. One justification of the assumption is that many policy makers do not consider anxiety when designing screening subsidy policies, because they often value health benefit much more than anxiety or view anxiety as temporary.

[^9]: ${ }^{12}$ How to identify such individuals remains a question for future research. We attempt to explore which factors in our sample can predict such individuals. It turns out that two factors have significant effects: when one has less frequent exercise and more self-control problems, as measured in the survey, they are more likely to demonstrate information avoidance as defined above.

