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Abstract

We develop a trade model where correlation in productivity between countries

generates heterogeneity in trade elasticities. This model approximates the full

class of factor demand systems consistent with Ricardian theory and formalizes

Ricardo’s insight that countries with relatively dissimilar technology gain more

from trade. Incorporating this insight entails a simple correction to the sufficient-

statistic approach used for macro counterfactuals. The novelty of our results

derives from a characterization of correlation that links macro factor demand

systems to technological primitives. Finally, our quantitative application shows

that heterogeneity in correlation is key to the gains from trade.
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1 Introduction

Two hundred years ago, Ricardo (1817) proposed the idea that cross-country differences

in production technologies can lead to gains from trade. Ricardo’s work, which

extended Smith (1776)’s idea on specialization to international trade, led to the

following insight: Two countries gain more from trade when they have dissimilar

production possibilities. Recent evidence suggests that similarity in technology

relates to country characteristics—for instance, to the proximity of countries (Keller,

2002; Bottazzi and Peri, 2003; Comin et al., 2013; Keller and Yeaple, 2013). If so,

correlation in productivity may lead to heterogeneity in the gains from trade.

The Ricardian trade model in Eaton and Kortum (2002, henceforth, EK)—which

gave rise to a rich theoretical and quantitative literature—does not account for

correlation in productivity. They assume that productivity is independently distributed

Fréchet across countries with common shape, θ. This assumption leads to tractability

via a max-stability property: The distribution of the maximum is also Fréchet and

its scale is the sum of the scale parameters of the marginals,

P[max{A1, . . . , AN} ≤ a] = exp

[
−

(
N∑
o=1

To

)
a−θ

]
.

This additive structure, a consequence of independence, implies that comparative

advantages across countries are symmetric and trade flows between country pairs

have a constant elasticity of substitution (CES). As a result, the EK model cannot

capture how technological similarities across countries shape the gains from trade—

which may be important to understand why countries choose certain trading partners

and not others.

In this paper, we develop a Ricardian theory that allows for rich patterns of correlation

in technology, yet preserves the max-stability property central to the EK model.

Specifically, we drop independence and assume a max-stable multivariate Fréchet

distribution for productivity. In this case, the distribution of the maximum is

P[max{A1, . . . , AN} ≤ a] = exp
[
−G(T1, . . . , TN)a−θ

]
,

for some correlation function G.1 Countries can now have different weight on the

1A correlation function, often referred as a tail dependence function or a extremal index function in
probability and statistics, provides a way of representing a max-stable copula.
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scale of the maximum. In this way, our framework generalizes EK, maintains its

tractability, and allows us to extend the results of Arkolakis et al. (2012) (henceforth,

ACR) to incorporate how technological similarity between countries influences the

gains from trade.

The assumption of a max-stable multivariate Fréchet productivity distribution admits

a factor demand system with heterogeneous elasticities, and implies expenditure

shares that belong to the generalized extreme value (GEV) class (McFadden, 1978).

As a result, any trade model that generates a GEV factor demand system is observationally

equivalent to a Ricardian model with a max-stable multivariate Fréchet distribution.

Our framework further captures general Ricardian theory due to an approximation

result: The GEV class approximates any factor demand system arising from Ricardian

trade—without the need to restrict to Fréchet productivity distributions. Put simply,

our framework captures the full aggregate implications of Ricardian trade theory.2

Despite this generality, our theory leads to intuitive and tractable counterfactual

analysis. Within the class of GEV factor demand systems, we can calculate the

gains from trade as a simple adjustment to the CES case: The results of ACR

generalize, after a simple correction, to the GEV class. In the Ricardian context, this

correction adjusts a country’s self-trade share for correlation in technology with the

rest of the world, formalizing Ricardo’s insight that more dissimilar countries have

higher gains from trade.

All in all, our approach uses the class of max-stable copulas to drop the assumption

of independent productivity in the EK model. Yet, several new insights follow

from only relaxing the dependence structure.

First, we bring existing Ricardian models into a unifying framework. The GEV

class accommodates many Ricardian models of trade, such as multi-sector models

(Costinot et al., 2012; Costinot and Rodrìguez-Clare, 2014; Levchenko and Zhang,

2014; DiGiovanni et al., 2014; Caliendo and Parro, 2015; Ossa, 2015; Levchenko

and Zhang, 2016; French, 2016; Lashkaripour and Lugovskyy, 2017), multinational

production models (Ramondo and Rodríguez-Clare, 2013; Alviarez, 2018), global

value chain models (Antràs and de Gortari, 2017), and models of trade with domestic

geography (Fajgelbaum and Redding, 2014; Ramondo et al., 2016; Redding, 2016).

2 While in the body of the paper we assume that preferences are CES for comparability to the
standard EK framework, this restriction is not necessary for our main results, which rely only on
expenditure shares matching import probabilities. In Online Appendix O.2.1, we show how to
relax this assumption.
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In Section 5, we show that these models, despite their distinct micro-foundations,

have identical macro factor demand systems and, hence, identical implications for

macro counterfactuals.

Second, we unpack this GEV macro structure by introducing a common foundation

based on technological primitives. Concretely, we provide a structure for technology

that is necessary and sufficient for productivity to be distributed max-stable multivariate

Fréchet. Our approach leverages the spectral representation theorem for max-

stable processes (De Haan, 1984; Penrose, 1992; Schlather, 2002; Kabluchko, 2009),

which generates extreme-value distributions from Poisson processes. This representation

enables us to generate disaggregate models consistent with our aggregate framework,

as well as build new economic models with rich patterns of correlation. We refer to

this structure as the global innovation representation because it can be interpreted as

the result of adopting technologies—which are a product of global innovations—

based on a country’s ability to apply each innovation. When countries adopt

similar technologies—those with similar attributes—they have correlated productivity.

Finally, the connection between the cross-country productivity distribution and

the attributes of innovations—representing the various micro-structures of non-

CES Ricardian models (e.g. sectors)—allows us to tie macro substitution patterns,

which are relevant for macro counterfactuals, to micro-estimates common in the

trade literature.

In Section 6, we explore the empirical relevance of Ricardo’s insight that the gains

from trade depend on similarity between countries. That is, does allowing for

heterogenous substitution patterns through correlation in productivity change the

inferred gains from trade—and other counterfactual exercises? We estimate a multi-

sector model of trade that allows for distance-dependent sectoral elasticities of

substitution across countries. This specification captures the possibility that nearby

countries may share similar technology—and therefore have correlated productivity.

Our estimates show that correlation falls with distance. This empirical result affects

counterfactuals: Accounting for spatial correlation translates into gains from trade

that are much higher—and much more heterogenous—than the gains calculated

under independence.

This paper relates to several strands of the literature. First, we naturally relate

to the large trade literature using the Ricardian-EK framework (see Eaton and

Kortum, 2012, for a survey). More generally, our approach can be applied to any
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environment that requires Fréchet tools, with the potential of changing some of

their quantitative conclusions. In particular, it can be applied to selection models

used in the growth literature (Hsieh et al., 2013), and the macro development

literature (Lagakos and Waugh, 2013; Bryan and Morten, 2018), as well as to recent

trade models used in the urban literature (Ahlfeldt et al., 2015; Monte et al., 2015;

Caliendo et al., 2017; Redding and Rossi-Hansberg, 2017).

Second, we relate to papers in the international trade literature that use non-CES

factor demand systems.3 Scarf and Wilson (2005) present a Ricardian model with

a demand structure that satisfies the gross substitutability property, and in which

productivity has an arbitrary distribution. They show that, in this case, the competitive

equilibrium exists and is unique. We restrict our attention to the sub-class of

GEV factor demand systems—which includes models used extensively in the trade

literature—and show that it can approximate any demand system generated by the

Ricardian model.

Building on the early work by Wilson (1980), Adao et al. (2017) show how to

calculate macro counterfactual exercises in neoclassical trade models with invertible

factor demand systems.4 They also provide sufficient conditions for non-parametric

identification using aggregate trade data. Their approach departs from CES demand—

in which independence of irrelevant alternatives (IIA) holds—but does not necessarily

lead to closed-form results. By focusing on the subclass of GEV factor demand

systems, we operationalize a tractable model of Ricardian comparative advantage

where IIA need not hold. Given that restriction, our aggregation result allows

us to relate various micro structures to the macro demand systems studied by

Adao et al. (2017), and, as a result, to incorporate disaggregate data to identify

macro substitution patterns. All in all, our distinct contribution is to provide

theoretical guidance on Ricardian micro-foundations underlying the class of GEV

factor demand systems, and in this way, create a bridge between the macro results

of Adao et al. (2017) and estimates, common in the trade literature, based on micro

data.

In that regard, papers such as Caron et al. (2014), Lashkari and Mestieri (2016),

3 A related trade literature departs from CES with the goal of analyzing endogenous markups
and their effects on the gains from trade. See DeLoecker et al. (2016), Feenstra and Weinstein (2017),
Bertoletti et al. (2017), and Arkolakis et al. (2017), among others.

4Wilson (1980) shows how a multi-country version of the Ricardian model in Dornbusch et al.
(1977) can be reduced to analyzing the properties of an exchange economy—-countries trade their
labor with each other.
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Brooks and Pujolas (2017), Feenstra et al. (2017), and Bas et al. (2017), among others,

estimate non-CES demand systems using disaggregate data. Even though they

abandon the class of homothetic demand systems, which we do not, they aim,

as we do, to show the consequences of abandoning linear gravity systems, and

to incorporate detailed micro data to estimate key elasticities (e.g., heterogeneous

price and income elasticities).5 By linking seemingly different micro structures to

common primitives of technology, our general framework provides guidance on

how to incorporate the micro estimates in this literature into macro counterfactual

exercises. In contrast with this literature, in our supply-side framework, substitution

patterns come from the degree of technological similarity between countries. As a

result, we can incorporate heterogeneous elasticities without relying on demand-

side factors.6

Finally, our global innovation representation, which characterizes max-stable multivariate

Fréchet distributions, relates to the literature on dynamic innovation and knowledge

diffusion processes that generate Fréchet productivity—as in Kortum (1997), Eaton

and Kortum (1999), Eaton and Kortum (2001), and Buera and Oberfield (2016).

This literature uses extreme value theory to generate independent max-stable random

variables. Our representation result introduces a new tool to this literature—the

spectral representation theorem for max-stable processes. Contrary to the results

from extreme value theory used in Kortum (1997)—which generate extreme value

distributions as a limit—our approach delivers exact and closed form results while

flexibly accommodating statistical dependence.

5Caron et al. (2014) use a constant-relative-elasticity-of-income utility functions to link
characteristics of goods in production to their characteristics in preferences. Lashkari and Mestieri
(2016) use constant-relative-elasticity-of-income-and-substitution (CREIS) utility functions that
allow for general relationships between income and price elasticies. Brooks and Pujolas (2017)
analyze the expression for gains from trade arising from models with unrestricted utility functions
(typically non-homothetic) that generate a non-constant trade elasticity. Feenstra et al. (2017) use a
nested CES utility function to estimate micro and macro elasticities of substitution in a multi-sector
model. Finally, Bas et al. (2017) break the Pareto assumption in the Melitz model of trade to get
country-pair specific aggregate elasticities, which they estimate using sectoral-level trade data.

6In Online Appendix O.2, we extend our framework to models where comparative advantage
come from demand-side factors as in the Armington model (Anderson, 1979), and from entry of
heterogenous firms as in the Krugman-Melitz model (Krugman, 1980; Melitz, 2003). Similarly to
ACR, these results make clear which assumptions on economic fundamentals lead to equivalence
within a large and useful class of models.
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2 Ricardian Model of Trade

Consider a global economy consisting of N countries that produce and trade in a

continuum of product varieties v ∈ [0, 1]. Consumers have identical CES preferences

with elasticity of substitution ε > −1, Cd =
(∫ 1

0
Cd(v)

ε
ε+1 dv

) ε+1
ε

. Given total

expenditure ofXd, expenditure on variety v isXd(v) ≡ Pd(v)Cd(v) = (Pd(v)/Pd)
−εXd

where Pd(v) is the price of the variety, and Pd =
(∫ 1

0
Pd(v)−εdv

)− 1
ε

is the price level

in country d.

We assume that the production function for varieties presents constant returns

to scale in labor and depends on both the origin country o where the good gets

produced and the destination market d where it gets delivered. For each v ∈ [0, 1],

output Yod(v) satisfies

Yod(v) = Aod(v)Lod(v), (1)

where Lod(v) is the amount of labor used to produce variety v at origin o for

delivery to d andAod(v) is the marginal product of labor—referred to as productivity.

This productivity variable captures both efficiency of production in the origin and

inefficiencies associated with delivery to the destination—trade costs.

The marginal cost to deliver a particular variety v to destination d from origin o is

cod(v) =
Wo

Aod(v)
, (2)

where Wo is the nominal wage in country o. We assume perfect competition so

that prices are equal to unit costs. Good v is provided to country d by the cheapest

supplier, so its price in the destination market is

Pd(v) = min
o=1,...,N

Wo

Aod(v)
. (3)

As in EK, we capture heterogeneity in production possibilities by modeling productivity

as a random draw. We focus on multivariate random variables which satisfy a

property known as max stability. The EK model, which is built on independent

Fréchet random variables, gets its tractability from this property. By relaxing the

independence assumption, we get a flexible, yet tractable, model of trade that

captures Ricardo’s insight that the degree of technological similarity determines

the gains from trade.
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2.1 Max-Stable Multivariate Fréchet Productivity

We start by providing a brief overview of max-stable multivariate Type II extreme

value (Fréchet) random variables.

Definition 1 (Multivariate θ-Fréchet). A random vector, (A1, . . . , AK), has a multivariate

θ-Fréchet distribution if for any αk ≥ 0 with k = 1, . . . , K the random variable maxk=1,...,K αkAk

has a Fréchet distribution with shape parameter θ. In this case, the marginal distributions

are Fréchet with (common) shape parameter θ and, for each k = 1, . . . , K, satisfy

P [Ak ≤ a] = exp
[
−Tka−θ

]
, (4)

for some scale parameter Tk.

This definition implies that a multivariate θ-Fréchet distribution is max stable—the

maximum has the same marginal distribution (up to scaling). The multivariate θ-

Fréchet distribution includes as special cases the independent multivariate Fréchet

distribution in EK, and the symmetric multivariate Fréchet distribution used in

Ramondo and Rodríguez-Clare (2013).7 For both special cases, the max-stability

property holds and lends the models their tractability.

By working with the class of multivariate θ-Fréchet random vectors, we can put

minimal restrictions on dependence and maintain the key property of max-stability.8

To make headway in that direction, we characterize the joint distribution of a

multivariate θ-Fréchet random vector by first defining the function that summarizes

its correlation structure.

Definition 2 (Correlation Function). G : RK
+ → R+ is a correlation function if:

1 (Normalization). G(0, . . . , 0, 1, 0, . . . , 0) = 1;

2 (Homogeneity). G is homogeneous of degree one;

3 (Unboundedness). G(x1, . . . , xK)→∞ as xk →∞ for any k = 1, . . . , K; and

7Footnote 14 of Eaton and Kortum (2002) considers this symmetric correlation specification.
They point out that the restriction to ρ = 0 is innocuous in their aggregate trade model because ρ >
0 also implies CES expenditure shares. However, any non-symmetric specification for correlation
leads to non-CES expenditure, as we show throughout this paper.

8Notice that the restriction to a common shape is necessary for max stability; general
multivariate Fréchet distributions may have marginal distributions with different shape
parameters, in which case the maximum, even under independence, is not distributed Fréchet.

7



4 (Differentiability). The mixed partial derivatives of G exist and are continuous up

to order K. The k’th partial derivative of G with respect to k distinct arguments is

non-negative if k is odd and non-positive if k is even.

A correlation function is closely related to a max-stable copula and adds a normalization

restriction to the definition of a social surplus function in GEV discrete choice

models (McFadden, 1978).9 The normalization restriction allows us to distinguish

between absolute advantage—captured by scale parameters—and comparative advantage—

captured by a correlation function. Correlation functions reflect comparative advantage

because they measure relative productivity levels across varieties and across origin

countries within the same destination market.

The next lemma characterizes the joint distribution of any multivariate θ-Fréchet

random vector in terms of the scale parameters of its marginal distributions and a

correlation function.

Lemma 1 (Correlation Function Representation). The random vector (A1, . . . , AK)

is multivariate θ-Fréchet if and only if there exists scale parameters Tk for k = 1, . . . , K

and a correlation function G such that its joint distribution satisfies

P [Ak ≤ ak, k = 1, . . . , K] = exp
[
−G

(
T1a

−θ
1 , . . . , TKa

−θ
K

)]
. (5)

Proof. The result follows closely Theorem 3.1 of Smith (1984). See Appendix B.

This standard result from probability theory allows us to parameterize joint distributions

using scale parameters and correlation functions. The restrictions defining a correlation

function ensure that (5) characterizes a valid multivariate Type II extreme value

(Fréchet) distribution.

Importantly, using the characterization in Lemma 1 and the homogeneity property

in Definition 2, we get the max-stability property. The maximum of a multivariate

θ-Fréchet random vector is θ-Fréchet,

P
[

max
k=1,...,K

Ak ≤ a

]
= exp

[
−G (T1, . . . , TK) a−θ

]
, (6)

with scale parameter G (T1, . . . , TK) and shape parameter θ. Evaluated at the scale

9A max-stable copula is a copula C : [0, 1]N → [0, 1] satisfying C(u1, . . . , uN )η = C(uη1 , . . . , u
η
N )

for η > 0. The mapping (u1, . . . , uN ) 7→ e−G(−1/ lnu1,...,−1/ lnuN ) is the max-stable copula associated
with a correlation function G.
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parameters of the marginal distributions, the correlation function acts as an aggregator

that returns the scale parameter of the maximum. Moreover, as in EK, the conditional

and unconditional distributions of the maximum are identical,

P
[

max
k′=1,...,K

Ak′ ≤ a | Ak = max
k′=1,...,N

Ak′

]
= P

[
max

k′=1,...,K
Ak′ ≤ a

]
. (7)

As for EK, this result is crucial for tractability because it ensures that expenditure

shares simply reflect the probability of importing from an origin country.10

To fix ideas, consider the special case of independent θ-Fréchet productivity, used

by EK. Independence implies that the correlation function is additive,

P[A1d(v) ≤ a1, . . . , Aod(v) ≤ aN ] =
∏

o=1,...,N

P[Aod(v) ≤ ao] = exp

(
−

N∑
o=1

Toda
−θ
o

)
.

The max-stability property holds since

P
[

max
o=1,...,N

Aod(v) ≤ a

]
= exp

[
−

(
N∑
o=1

Tod

)
a−θ

]
.

An additive correlation function imposes a strong assumption, namely that comparative

advantages across countries are symmetric. By breaking this symmetry, our model

accommodates heterogeneity in comparative advantage, and, as we show in Section 3,

allows us to formalize how similarity in technology matters for the gains from

trade.

In Section 4, we further show how a correlation function can be constructed from

fundamentals, and provide an economic justification for any choice of G.

2.2 Prices and Trade Shares

We now characterize import price distributions and expenditure shares under the

assumption that productivity is multivariate θ-Fréchet. The marginal cost to deliver

a particular variety v to destination d from origin o is given by (2). The joint

distribution of productivity determines the joint distribution of potential import

prices, as we show next.

10Appendix A formally presents this and other properties of Fréchet random variables which we
use throughout the paper.
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Proposition 1 (Potential Import Price Distribution). If productivity has a multivariate

θ-Fréchet distribution, then the joint distribution of prices presented to destination market

d is given by a multivariate Weibull distribution satisfying

P[P1d(v) ≥ p1, . . . , PNd(v) ≥ pN ] = exp
[
−Gd

(
T1dW

−θ
1 pθ1, . . . , TNdW

−θ
N pθN

)]
.

Proof. See Appendix C.

For each origin o, the marginal distribution of prices, P[Pod(v) ≥ p] = exp
[
−TodW−θ

o pθ
]
,

is a Weibull distribution with scale TodW−θ
o and shape θ.11 The correlation function

Gd determines the dependence structure of potential import prices across origins.

Define bilateral import price indices as Pod ≡
(∫ 1

0
Pod(v)−εdv

)− 1
ε
. Proposition 1 together

with Appendix Lemma A.1 implies that

Pod = γT
−1/θ
od Wo, (8)

with γ > 0 (defined in Proposition 2). We can further map the scale parameters

Tod, which are bilateral cost shifters, into standard variables in the trade literature:

an origin-country productivity index, Ao ≡ T
1/θ
oo , and an iceberg trade cost index, τod ≡

(Too/Tod)
1/θ. The variable Ao measures a country’s ability to produce goods in their

domestic market, while τod measures efficiency losses associated with delivering

goods to market d—the standard iceberg-type trade costs. Re-writing (8) using

these indices yields Pod = γτodWo/Ao.

Given the distribution of potential import prices, a country imports each variety

from the cheapest source. The max-stability property for the productivity distribution,

together with the previous characterization of the potential import price distribution,

leads to closed-form results for trade shares and the price index.

Proposition 2 (Generalized EK). Suppose productivity has a multivariate θ-Fréchet

distribution with θ > ε. Then:
11A random vector (B1, . . . , BK) is multivariate Weibull if its marginal distributions are Weibull:

P[Bk ≤ b] = 1 − e−Skbθk for some scale Sk > 0 and shape θk > 0 across k = 1, . . . ,K. Note that if
(A1, . . . , Ak) is θ-Fréchet, then the vector (A−1

1 , . . . , A−1
K ) is multivariate Weibull and its marginals

have common shape θk = θ, for each k = 1, . . . ,K.
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1. The share of varieties that destination d imports from o is

πod =
TodW

−θ
o God∑N

o′=1 To′dW
−θ
o Go′d

, (9)

where

God ≡ Gd
o

(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)
and Gd

o (x1, . . . , xN) ≡ ∂Gd (x1, . . . , xN)

∂xo
;

(10)

2. The distribution of prices among goods imported into country d from o is identical

to the distribution of prices in d;

3. Total expenditure by country d on goods from country o is Xod = πodXd; and

4. The price index in country d is

Pd = γGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)− 1
θ , (11)

where γ ≡ Γ
(
θ−ε
θ

)− 1
ε and Γ(·) is the gamma function.

Proof. See Appendix D.

First, the formula for the expenditure share, πod, has the same form as choice

probabilities in GEV discrete choice models (McFadden, 1978), with TodW−θ
o taking

the place of choice-specific utility.

Second, using (9) and (11), correlation-adjusted expenditure shares are CES,

π∗od ≡
πod
God

= Tod

(
γ
Wo

Pd

)−θ
. (12)

As a result, these shares constitute a gravity system, as defined by ACR, and are

sufficient statistics for real import prices, π∗od = (Pod/Pd)
−θ.12

Third, as in EK, the distribution of prices among goods actually imported into

market d is identical to the overall distribution of prices in d. As a result, expenditure

shares are equal to the share of varieties imported into d from o.

12Notice that Gd(P−θ
1d , . . . , P

−θ
Nd) =

∑N
o′=1 To′dW

−θ
o Go′d so that the denominator of the

expenditure share in (10) is (Pd/γ)−θ.
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Finally, the price level in each destination market is determined by aggregating

import price indices using the correlation function. In analogy to the discrete

choice literature, welfare calculations depend crucially on the specification of this

function.

2.3 GEV Factor Demand Systems

What macro substitution patterns does this theory generate? To answer this question,

we first establish, in Corollary 1, that the Ricardian model with multivariate θ-

Fréchet productivity implies expenditure shares in the GEV class. We next establish

in Proposition 3 that the factor demand systems generated by the Ricardian model

with θ-Fréchet-distributed productivity can approximate any factor demand system

generated by stochastic productivity. That is, our framework is consistent with any

Ricardian model with constant returns to scale in production, competitive markets,

and a single factor of production in each country.13

First, we define a factor demand system for destination d as a collection of expenditure

share functions {πod}No=1 such that for each o = 1, . . . , N the function πod : RN
+ ×

R+ → [0, 1] is homogenous of degree zero and for any vector of wages W ≡
(W1, . . . ,WN) ∈ RN

+ and level of expenditure Xd ≥ 0,
∑N

o=1 πod(W, Xd) = 1. Next,

we define the class of GEV factor demand systems.

Definition 3 (GEV Factor Demand System). The collection {πGEV
od }No=1 is a generalized

extreme value (GEV) factor demand system for destination d if there exists a shape parameter

θ > 0, scale parameters {Tod}No=1, and a correlation function Gd satisfying

πGEV
od (W, Xd) =

TodW
−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )∑

o′ To′dW
−θ
o′ G

d
o′(T1dW

−θ
1 , . . . , TNdW

−θ
N )

, (13)

for all o = 1, . . . , N .

The GEV class is homothetic, and closely related to the functional form for choice

probabilities in GEV discrete choice models (McFadden, 1978), differing only by

the normalization restriction in Definition 2.
13As mentioned in Footnote 2, the assumption on CES preferences is not crucial. In Online

Appendix O.2.1, we show that if consumer preferences are homothetic and generate demand
satisfying a law of large numbers on Borel subsets of the continuum of varieties, expenditure shares
equal import probabilities when productivity is max-stable multivariate Fréchet.
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An important class of factor demand systems within the GEV class is CES. This

class is generated by an additive correlation function, implying expenditure shares

of the form

πCES
od (W, Xd) =

TodW
−θ
o∑N

o′=1 To′dW
−θ
o′

. (14)

The CES specification includes most of the workhorse models of trade, such as

Armington, Melitz, and EK (Arkolakis et al., 2012).

The GEV class, however, is much larger than the CES class. For example, consider

the following cross-nested CES (CNCES) correlation function,

Gd(x1, . . . , xN) =
K∑
k=1

(
N∑
o=1

(ωkodxo)
1/(1−ρk)

)1−ρk

. (15)

The factor demand system implied by this correlation function is

πCNCES
od (W, Xd) =

K∑
k=1

(
Pkod
Pkd

)−σk P−θkd∑M
k′=1 P

−θ
k′d

, (16)

where Pkod ≡ γT
−1/θ
kod Wo, Pkd ≡ γ(

∑N
o=1 P

−σk
kod )−1/σk , and σk ≡ θ/(1− ρk).

It is clear from comparing (14) with (16) that the GEV class can generate richer

patterns of substitution across exporters than CES. Comparing the elasticity of

demand in the GEV and CES models, around any observed expenditure share,

the difference comes from the correlation function,

∂ ln πGEV
od

∂ lnWo

=
∂ ln πCES

od

∂ lnWo

+
∂ lnGod

∂ lnWo

and
∂ ln πGEV

o′d

∂ lnWo

=
∂ ln πCES

o′d

∂ lnWo

+
∂ lnGo′d

∂ lnWo

, (17)

with ∂ lnπCES
od /∂ lnWo = −θ (1− πod), and ∂ ln πCES

o′d /∂ lnWo = θπo′d.

Our next result states that the GEV factor demand system in (13) matches the

expenditure shares of the Ricardian model with multivariate θ-Fréchet productivity

in Proposition 2.

Corollary 1 (GEV Equivalence). For any trade model that generates a GEV factor

demand system, there exists a Ricardian model that generates the same factor demand

system for some max-stable multivariate Fréchet distribution for productivity.

A direct implication of Corollary 1 is that the Ricardian model with multivariate θ-

Fréchet productivity generates factor demand systems matching many (non-CES)

13



trade models. In particular, many of those models are in the GEV sub-class of

CNCES factor demand systems, as we show in Section 5.

We push the result in Corollary 1 one step further by adapting results from the

discrete choice literature: GEV random utility models are dense in the space of all

random utility models (Dagsvik, 1995). This result for choice probabilities does

not directly apply to our model since we have CES demand at the variety level.

However, an analogous result holds, as we show next.

Proposition 3 (GEV Approximation). Let {Aod(v)}No=1 have any multivariate distribution

whose marginals have finite moment of order ε. Denote the factor demand system implied

by the Ricardian model when productivity is distributed the same as {Aod(v)}No=1 by {πod}No=1.

Then for any compactK ⊂ RN+1
+ and any ε > 0, there exists a GEV factor demand system,

{πGEV
od }No=1, such that

sup
(W,Xd)∈K

∣∣πod(W, Xd)− πGEV
od (W, Xd)

∣∣ < ε ∀o = 1, . . . , N.

Proof. The proof constructs an approximating GEV factor demand system that

converges uniformly to the true demand system. See Appendix E.

This result derives from the following fact: any multivariate distribution can be

approximated by multiplying by independent Fréchet noise with sufficiently low

dispersion. The proof of Proposition 3 shows that the factor demand system associated

with productivity {Aod}No=1 is uniformly approximated by a GEV factor demand

system that arises from incorporating a small amount of independent Fréchet noise.

That is, restricting to the GEV class amounts to smoothing over the factor demand

system to ensure closed-form results.

The key implication of Proposition 3 is that any factor demand system generated

by Ricardian trade can be approximated by a Ricardian model where productivity

has a multivariate θ-Fréchet distribution. Put simply, through this approximation

result, our framework encompasses the full macroeconomic implications of Ricardian

trade theory.
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3 Macro Counterfactuals

We next show that heterogeneity in correlation leads to heterogeneity in the gains

from trade and changes calculations of (counterfactual) departures from the current

equilibrium. It turns out that calculations using a GEV factor demand system are

virtually identical, after a correction for correlation, to the calculations in ACR

for trade models with CES factor demand systems. Moreover, the correlation

correction only requires data on expenditure shares across countries, preserving

the simplicity of the ACR calculation for the gains from trade.

From (9), the self-trade share is

πdd =
TddW

−θ
d Gdd∑N

o=1 TodW
−θ
o God

. (18)

Using the expression for the price index in (11), we can write the real wage in

country d as
Wd

Pd
= γ−1T

1
θ
dd (π∗dd)

− 1
θ , (19)

where π∗dd ≡ πdd/Gdd is the correlation-adjusted self-trade share defined in (12).

Let x̂ ≡ x′/x denote the change from x to x′. Using (19), it is straightforward to

show that the change in real wages between two equilibria is given by

Ŵd

P̂d
≡ W ′

d/P
′
d

Wd/Pd
= (π̂∗dd)

− 1
θ . (20)

That is, in any trade model that implies a GEV factor demand system, a (log)

change in equilibrium real wages—triggered by some shock to the model’s parameters—

is proportional to the (log) change in the correlation-adjusted self-trade share, with

the factor of proportionally determined by θ.14

3.1 Gains From Trade: Autarky

What are the consequences of correlation in technology for the gains from trade

relative to autarky? Intuitively, if two countries had perfectly correlated productivity

14In Online Appendix O.1, we define the equilibrium formally and show how to apply exact
hat-algebra methods to solve for a change from the current (observed) equilibrium to any
counterfactual equilibrium.
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draws across varieties, they would offer each other identical prices, and there

would be no scope for trade between them. Our correlation structure is able to

capture this possibility.

In autarky, country d purchases only its own goods so that πdd = 1. Moreover, as

τod → ∞, Tod ≡ (Ao/τod)
θ → 0 for o 6= d, and Gdd = 1—correlation with other

countries is irrelevant in autarky. The expression in (20) collapses to

GTd ≡
Wd/Pd

(Wd/Pd)
Autarky =

(
πdd
Gdd

)− 1
θ

. (21)

This expression generalizes the results of ACR to the class of models with GEV

demand systems. With a CES factor demand system, Gdd = 1, and the gains from

trade in (21) simplify to the ones in ACR where two countries with the same self-

trade share have the same gains from trade. This expression for gains also admits

the possibility that if two countries had the same self trade share, but one country

had very similar technology to all other countries—high correlation—their gains

from trade would be smaller. In contrast, if that country had dissimilar technology

to other countries—low correlation—their gains from trade would be larger. In

this way, our framework captures Ricardo’s insight on the heterogeneity of gains

from trade across countries.

Concretely, consider a three-country world with a correlation function given by

Gd(x1, x2, x3) =
(
x
1/(1−ρ)
1 + x

1/(1−ρ)
2

)1−ρ
+ x3,

which implies that the joint distribution of productivity across countries is

P[A1d(v) ≤ a1, A2d(v) ≤ a2, A3d(v) ≤ a3] = exp

[
−
(

(T1da
−θ
1 )

1
1−ρ + (T2da

−θ
2 )

1
1−ρ

)1−ρ
+ T3da

−θ
3

]
.

Countries 1 and 2 are technological peers, with the parameter ρ measuring the

degree of correlation in their technology. Country 3’s productivity is uncorrelated

with productivity in countries 1 and 2. After some algebra, we get that15

God =

(
πod

π1d + π2d

)ρ
for o = 1, 2, and G3d = 1,

15God =
(
(T1dW

−θ
1 )1/(1−ρ) + (T2dW

−θ
2 )1/(1−ρ)

)−ρ
(TodW

−θ
o )ρ/(1−ρ) for o = 1, 2 Given that πod =

TodW
−θ
o God/G

d(T1dW
−θ
1 , T2dW

−θ
2 , T3dW

−θ
3 ), we can take the ratioG1d/G2d = (π1d/π2d)

ρ to getGod
for o = 1, 2. For country 3, G3d = 1.
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which implies that the gains from trade are

GTd =
[
π1−ρ
dd (π1d + π2d)

ρ]− 1
θ for d = 1, 2 and GT3 = π

− 1
θ

33 .

The gains from trade for countries 1 and 2 depend on the degree of correlation

in technology, while the gains from trade for country 3 are pinned down by the

country’s self-trade share. The corrected self-trade shares for country 1 and 2 end

up being a Cobb-Douglas combination between each country’s expenditure share

on its own goods and on the aggregation of its own goods with its peer’s goods—

the self-trade share if countries 1 and 2 were combined into a single country. When

correlation in technology is zero (ρ = 0), a correlation correction is unnecessary;

for positive correlation, the correction increases effective self trade and implies

lower gains from trade; and for perfect correlation (ρ = 1), the two countries are

effectively a single country and the gains from trade depend on their combined

self trade.

3.2 Calculating the Correlation Correction

Given the correlation function, we show that one can calculate the gains from

trade directly from expenditure data, generalizing the sufficient-statistic approach

in ACR.

Because the demand system is CES after correcting for correlation, correlation-

adjusted shares in (12) are sufficient statistics for bilateral import prices. The procedure

to compute these adjusted expenditure shares amounts to inverting the demand

system in (9).

Using the definition of import price index in (8), and the homogeneity of degree

zero of Gd
o, expenditure shares in (9) can be written as

πod =

(
Pod
Pd

)−θ
Gd
o

[(
P1d

Pd

)−θ
, . . . ,

(
PNd
Pd

)−θ]
.

Further using (12) yields the system

πod = π∗odG
d
o (π∗1d, . . . , π

∗
Nd) for o = 1, . . . , N. (22)

Given expenditure share data and the correlation function of a single destination,
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the expression in (22) constitutes a system of N equations in the N unknown

correlation-adjusted expenditure shares across origins.16 As a result, we only need

expenditure share data to calculate the gains from trade. We still need, however,

estimates of the correlation function; the next section provides results motivating

estimation from disaggregate trade data.

4 From Macro to Micro

What are the origins of cross-country correlation in productivity? We next present

a structure for technology that is necessary and sufficient for productivity to be

distributed multivariate θ-Fréchet. This structure can be interpreted as the result

of adopting technologies—which are a product of global innovations—based on a

country’s ability to apply each innovation. When countries adopt similar technologies—

those with similar attributes—they have correlated productivity.

Our technology structure satisfies the following two assumptions.

Assumption 1 (Innovation Decomposition). There exists a measurable space of attributes

(X ,X) and for each v ∈ [0, 1] an infinite, but countable, set of global innovations, i =

1, 2, . . . , with global productivity Zi(v) > 0 and attributes χi(v) ∈ X , such that

Aod(v) = max
i=1,2,...

Zi(v)Aod(χi(v)), (23)

for some measurable function χ 7→ Aod(χ), and each o, d = 1, . . . , N .

Assumption 1 states that, for each good v, there is a countable collection of technological

innovations that represent physical techniques (i.e., blueprints) for producing a

good. Each innovation is characterized by two components. Global productivity,

Zi(v), measures the fundamental efficiency of the technique, and is identical across

all origins and destinations. Attributes, χi(v), represent anything specific to the

innovation that is relevant for heterogeneity in productivity across origins and

destinations. For instance, one innovation’s attribute might be the country where

the innovation was first developed. Alternatively, attributes could include the

16Note that the correlation adjustment is well defined. The mapping from RN+ to RN+ , defined by
the right-hand side of the system in (22), satisfies strict gross substitutability and is homogenous of
degree one. As a result, it is injective and there is a unique solution for {π∗

od}No=1, given {πod}No=1

(see, for instance, Berry et al., 2013).
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sectors and firms that can use the technique. Generally, attributes capture micro-

foundations that underlie country-level productivity, and allow us to develop models

in which those micro-foundations determine the production techniques used in

each country.

The functionAod(χ) determines how bilateral factors (e.g. proximity) and attributes

combine to determine productivity. We refer to the variable Aiod(v) ≡ Aod(χi(v)) as

the spatial applicability of idea i for production in o and delivery to d. For instance,

if an attribute of an innovation were whether or not the innovation is known in

each country, applicability would be zero in any country with no knowledge of

the innovation; conversely, if applicability were positive, it could depend on the

proximity between production location o and destination d.

Our next assumption states that innovations follow a Poisson process over global

productivities and attributes.

Assumption 2 (Poisson Innovations). There exists θ > 0 and a σ-finite measure µ

such that
∫
X Aod(χ)θdµ(χ) < ∞ and the collection {Zi(v), χi(v)}i=1,2,... consists of the

points of a Poisson process with intensity measure θz−θ−1dzdµ(χ), i.i.d. over v ∈ [0, 1].

First, Assumption 2 implies that the expected number of innovations with global

productivity above any cut off z > 0 and attributes in any set B ∈ X is

E

[
∞∑
i=1

1{Zi(v) > z, χi(v) ∈ B

]
=

∫
B

∫ ∞
z

θz−θ−1dzdµ(χ) = z−θµ(B).

The measure µ is the expected number of innovations with attributes in the set B

and global productivity above 1. For example, if χi(v) is a list of sectors that can

use the innovation, µ({s1, s2}) is the expected number of innovations that can be

used by both sectors s1 and s2.

Second, conditional on those innovations with global productivity above z and in

the set B, the likelihood that Zi(v) = z > z is

∂

∂z
P[Zi(v) ≤ z | Zi(v) > z, χi(v) ∈ B] =

θz−θ−1dzµ(B)∫∞
z
θz−θ−1dzµ(B)

=
θzθ

zθ+1
.

That is, global productivities are independent of attributes, and, conditional on

being above z, are distributed Pareto with lower bound z and shape θ. As a

consequence, spatial applicabilities—which arise from an innovation’s attributes—

19



are independent of global productivities.17 The key is that the measure µ, which

determines the joint distribution of spatial applicability across origin countries,

is relatively unrestricted and allows for rich patterns of correlation through the

inclusion of innovation attributes.18

One can interpret Assumption 2 as arising from some random discovery process

as in Eaton and Kortum (1999, 2010). In our static framework, we interpret i as

indexing the collection of all innovations up until the present. We do not explicitly

model how innovation occurs, and simply take as given the set of innovations. The

key difference between our setup and the Poisson process in Eaton and Kortum

(1999) is the inclusion of attributes. Rather than assuming that innovations are

country specific, innovations—which represent physical methods to produce a

good—are globally applicable. Origin countries adopt whichever innovation is

most efficient for them depending on how attributes determine the spatial applicability

of the innovation.

The following theorem characterizes multivariate θ-Fréchet distributions and is a

consequence of the spectral representation theorem for max-stable processes (De

Haan, 1984; Penrose, 1992; Schlather, 2002; Kabluchko, 2009).

Theorem 1 (Global Innovation Representation). For each d, productivity across origins

is multivariate θ-Fréchet if and only if it satisfies Assumptions 1 and 2. In this case, we

say that productivity has a global innovation representation. Its joint distribution is

P [A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = exp
[
−Gd

(
T1da

−θ
1 , . . . , TNda

−θ
N

)]
, (24)

with scale Tod ≡
∫
X Aod(χ)θdµ(χ), for o = 1, . . . , N , and correlation function

Gd(x1, . . . , xN) ≡
∫
X

max
o=1,...,N

Aod(χ)θ

Tod
xodµ(χ). (25)

Proof. Sufficiency follows directly from Campbell’s theorem (Kingman (1992)). Necessity

follows from Theorem 1 in Kabluchko (2009), which states that any θ-Fréchet process

has a spectral representation. See Appendix F.

This characterization of productivity establishes primitive assumptions on the technology
17Any random variable defined as a measurable function of χi(v) has its stochastic properties

derived from the measure space (X ,X, µ). We denote by P the probability measure of the
underlying probability space on which global productivities and attributes are jointly defined.

18In our examples, we use Fréchet distributions for spatial applicability only because they lead
to closed-form solutions.
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structure that are necessary and sufficient for θ-Fréchet-distributed productivity

across origin countries. In this way, θ-Fréchet productivity can always be interpreted

as arising from the spatial applicability of global technologies. Intuitively, both

absolute advantage (the scale parameters) and comparative advantage (the correlation

function) are the result of the ability of exporters to adopt innovations.

The result in Theorem 1 provides a method to compute scale parameters and

correlation functions: They are simply the first moments of spatial applicability

and the expected value of the maximum of spatial applicability (after scaling). Put

differently, Theorem 1 gives guidance on how to construct max-stable copulas.

Concretely, a symmetric multivariate Fréchet distribution (as in Ramondo and

Rodríguez-Clare (2013)) arises from assuming that the spatial applicability of individual

technologies is independent across o and distributed Fréchet with scale Sod and

shape σ > θ. Then, Theorem 1 establishes that the scale parameters equal Tod =∫
X Aod(χ)θdµ(χ) = Γ(1 − θ/σ)S

θ/σ
od µ(X ), where we use Appendix Lemma A.1 to

compute the integral. The scale depends on the scales of the marginal distributions

of spatial applicability and is proportional to the expected number of innovations

with productivity above 1, µ(X ). The correlation function (the expectation in (25))

is derived as follows. From Appendix Lemma A.1, (Aod(χi(v))θ/Tod)xo is σ/θ-

Fréchet with scale xσ/θo /µ(X ). Due to independence and max-stability, the maximum

over o is also σ/θ-Fréchet and its scale is the sum of the underlying scale parameters.

Using Appendix Lemma A.1 to compute the integral in (25) yields

Gd(x1, . . . , xN) =

(
N∑
o=1

x
1

1−ρ
o

)1−ρ

, where ρ ≡ 1− θ

σ
, (26)

and the implied joint distribution of productivity follows from (24) in Theorem 1.

The correlation function in (26) takes the form of a CES aggregator. The coefficient

ρmeasures the degree of correlation, which arises from dispersion in spatial applicability,

controlled by the shape parameter σ. As σ → θ, dispersion in applicability is high,

and ρ → 0. Intuitively, when applicability becomes very fat tailed, it dominates

the contribution of the common global component of productivity. In this limiting

case, productivity is independent and the correlation function is additive due to

the assumption that applicability is independent across countries. In contrast, as

σ → ∞, dispersion in applicability becomes negligible and ρ → 1. In this case,

applicability becomes deterministic and heterogeneity in productivity is entirely
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determined by the global component, Zi(v). As a result, productivity becomes

perfectly correlated across countries.

This example provides intuition on how Theorem 1 generates varying degrees of

correlation in productivity from underlying assumptions on the spatial applicability

of technologies across the globe. High dispersion in spatial applicability dampens

the importance of the common global component of productivity and reduces

correlation, while the opposite is true when dispersion in spatial applicability is

low.

Theorem 1 also allows us to relate macro-level multivariate θ-Fréchet distributions

to the underlying attributes of innovations. As a consequence, the theorem implies

that we can always incorporate additional (potentially observable) micro-level variables

into the model via innovation attributes.

4.1 Disaggregation

We now consider the implications of Theorem 1 when (some) innovation attributes

are observable. The following corollary establishes that the joint distribution of

productivity, conditional on some observable component of attributes, ki(v), is also

multivariate θ-Fréchet.

Corollary 2 (Disaggregation). Suppose that productivity has a global innovation representation

with attributes χi(v) = {ki(v), εi(v)} ∈ {1, . . . , K} × E , and intensity dmk(ε). Then,

micro-level productivity,

Akod(v) ≡ max
i=1,2,···|ki(v)=k

Zi(v)Aod(ki(v), εi(v)),

is multivariate θ-Fréchet and independent across k. The scale parameters are Tkod =∫
E Akod(ε)

θdmk(ε), and the within-k correlation function is

Gkd(x1, . . . , xN) =

∫
E

max
o=1,...,N

Aod(k, ε)
θ

Tkod
xodmk(ε).

Characteristics, ki(v), represent potentially observable components of the innovation’s

attributes, while the remaining portion εi(v) are unobservable. Producttivity is

independent across and correlated within characteristics. In this way, Corollary 2

provides an interpretation for the attributes in Theorem 1—they are latent factors
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that generate correlation across countries.

This result connects the macro model studied so far to potential underlying micro-

foundations. We can disaggregate country-level productivity by conditioning on

innovation attributes, and the resulting disaggregate productivity distribution is

also θ-Fréchet.

When innovation characteristics are observable, we can use this result to incorporate

disaggregate expenditure data (e.g. sectoral trade data). Define expenditure on

goods produced using innovations with ki(v) = k as

Xkod ≡
∫ 1

0

Xd(v)1

{
Pkod(v) = min

k′=1,...,K,o′=1,...,N
Pk′o′d(v)

}
dv,

where Pkod(v) ≡ Wo/Akod(v).19 Because the within-k distribution of productivity is

multivariate θ-Fréchet, the factor demand system for k-goods is GEV,

Xkod

Xkd

=
TkodW

−θ
o Gkd

o (Tk1dW
−θ
1 , . . . , TkNdW

−θ
N )∑N

o′=1 Tko′dW
−θ
o′ G

kd
o′ (Tk1dW

−θ
1 , . . . , TkNd(χ)W−θ

N )
, (27)

with Xkd ≡
∑N

o=1Xkod. Additionally, since productivity is independent across k,

the share of total expenditure on k-goods is CES,

Xkd

Xd

=
P−θkd∑K
k′=1 P

−θ
k′d

, (28)

where Pkd = γGkd(Tk1dW
−θ
1 , . . . , TkNdW

−θ
N )−1/θ. Inspection of (27) shows that correlation

manifests in the trade data in terms of substitution patterns within characteristics

(e.g., sectors).

We now provide a concrete example of applying Corollary 2 to generate a cross-

nested CES (CNCES) factor demand system, as in (16). This example is important

because many Ricardian models in the literature are instances of a CNCES factor

demand system—as we show in Section 5.20

To get a CNCES factor demand system, we build on our previous example where

independent spatial applicability led to symmetric correlation in productivity. Assume

that the distribution of spatial applicability conditional on a given characteristic

19When Akod(v) = 0, Pkod(v) =∞.
20In Appendix G, we provide an example of a generalized mixed CES factor demand system that

includes both CNCES and mixed-CES, as in Adao et al. (2017), as special cases.
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is independent σk-Fréchet across origins and i.i.d across innovations. The scale is

Skod. Under this assumption, Corollary 2 implies that characteristic-level productivity

has a joint distribution over o that is symmetric multivariate θ-Fréchet with correlation

function as in (26). The correlation coefficient is ρk = 1 − θ/σk, and scales are

Tkod = Γ(1 − θ/σk)S
θ/σk
kod . Due to independence across k, the joint distribution of

productivity across origins and characteristics is

P[Akod(v) ≤ ako ∀k = 1, . . . , K, o = 1, . . . , N ] = exp

 K∑
k=1

(
N∑
o=1

(Tkoda
−θ
ko )

1
1−ρk

)1−ρk
 .

The k-level expenditure shares in (27) become

Xkod

Xd

=

(
Pkod
Pkd

)−σk P−θkd∑M
k′=1 P

−θ
k′d

Xd, (29)

where Pkod ≡ γT
−1/θ
kod Wo and Pkd =

(∑N
o=1 P

−σk
kod

)−1/σk
. The first term on the right-

hand side of (29) is expenditure within k and is CES with elasticity σk. The second

term refers to between-k expenditure and is also CES. The aggregate demand

system is cross-nested CES, as in (16), with each nest corresponding to one of the

finite number of innovation characteristics.

In summary, Corollary 2 shows how to incorporate disaggregate data into our

macroeconomic framework.

4.2 Aggregation

We next provide an aggregation result for recovering the country-level correlation

function associated with the disaggregation in Corollary 2.

Corollary 3 (Aggregation). Under the hypotheses and notation of Corollary 2, country-

level productivity is

Aod(v) = max
k=1,...,K

Akod(v),

which is multivariate θ-Fréchet with scale Tod =
∑N

k=1 Tkod and correlation function

Gd(x1, . . . , xN) =
K∑
k=1

Gkd (ωk1dx1, . . . , ωkNdxN) ,
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for aggregation weights ωkod ≡ Tkod/Tod.

Country-level productivity comes simply from adopting the most efficient innovation.

Due to independence of productivity over characteristics, the macro scale parameters

are the sum of the characteristic-level scales, and the country-level correlation

function comes from aggregating within-characteristic correlation using relative

scales as aggregation weights.

Suppose that we have an estimate of the within-k correlation function. How can

we use Corollary 3 to recover country-level correlation-adjusted expenditure shares

and the country-level correlation function in order to perform counterfactual analysis?

Aggregation weights, ωkod, are key for the aggregation procedure. Because correlation-

adjusted expenditure shares are proportional to scale parameters, these weights

can be recovered by adjusting disaggregate expenditure shares for correlation.

The logic for computing correlation-adjusted trade shares at the micro level follows

the derivations in Section 3.2. Gravity holds after correcting for correlation,

π∗kod ≡
πkod
Gkod

= Tkod

(
γ
Wo

Pd

)−θ
, (30)

where πkod ≡ Xkod/Xd and Gkod ≡ Gkd
o (Tk1dW

−θ
1 , . . . , TkNdW

−θ
N ). We can then

recover k-level correlation-adjusted expenditure shares by solving

πkod = π∗kodG
kd
o (π∗k1d, . . . , π

∗
kNd).

As (30) shows, correlation-adjusted shares are proportional to scale parameters

and Tod =
∑K

k=1 Tkod. Hence, the country-level correlation-adjusted shares and the

aggregation weights satisfy

π∗od =
K∑
k=1

π∗kod, and ωkod =
π∗kod
π∗od

.

Aggregation weights equal the ratio of disaggregate to aggregate correlation-adjusted

shares. In addition to being sufficient statistics for real import prices, these shares

are sufficient statistics for the aggregation weights.
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For example, in the CNCES case, π∗kod = X1−ρk
kod Xρk

kd/Xd, which leads to

π∗od =
K∑
k=1

X1−ρk
kod Xρk

kd

Xd

, and ωkod =
X1−ρk
kod Xρk

kd∑K
k′=1X

1−ρk′
k′od X

ρk′
k′d

.

Given an estimate of the k-level correlation coefficient, ρk, these quantities simply

reflect observed trade flows; the country-level correlation function follows from

(15).

Together, these results allow us to pass seamlessly between the micro and macro

levels. Corollary 2 states that we can relate a given macro model with multivariate

θ-Fréchet productivity to an underlying disaggregate model in which productivity

also has a multivariate θ-Fréchet distribution. In turn, Corollary 3 shows how to

recover the correlation-adjusted trade shares and correlation function of the macro

model. The link comes from maximizing productivity across k within an origin

country.

The natural consequence is that we can estimate the model using disaggregate data

(e.g., sectoral data), and perform macro counterfactual analysis using the results in

Section 3. Thanks to these results, we can connect (Ricardian) micro foundations

to macro substitution patterns, as the applications in the next section show.

In summary, the key role of Theorem 1 is to tie cross-country correlation in productivity

to potential micro-foundations. It characterizes correlation as reflecting the extent

to which countries adopt similar innovations—with similar attributes. In turn,

Corollary 2 and Corollary 3 guide the development of quantitative macro models

based on disaggregate factors, and as such, they also guide the incorporation of

disaggregate data into estimation.

5 Applications

We now present applications that extend the Ricardian model of trade in EK to

multiple sectors (Caliendo and Parro, 2015), multinational production (Ramondo

and Rodríguez-Clare, 2013), domestic geography (Ramondo et al., 2016), global

value chains (Antràs and de Gortari, 2017), and intermediate inputs (Eaton and

Kortum, 2002; Alvarez and Lucas, 2007). All of these models deliver a GEV factor
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demand system and satisfy the gross substitutes property.21 These applications

also provide concrete examples of the results in the previous section linking county-

level correlation to micro characteristics.

5.1 Multiple Sectors

Assume that each country is composed of multiple sectors, s = 1, . . . , S. Caliendo

and Parro (2015) assume that consumers in destination d have Cobb-Douglas preferences

so that sectoral shares Xsd/Xd are exogenous, and assume that productivity within

each sector across origins is distributed independent Fréchet with shape θs and

scale Ãso. Given trade costs τsod, the share of d’s sector-s expenditure on goods

from origin o is

Xsod

Xsd

=

(
τsod

Wo

Aso

)−θs
∑N

o′=1

(
τso′d

Wo′
Aso′

)−θs , (31)

where Aso ≡ Ã
1/θ
so . Due to the Cobb-Douglas assumption, sectoral expenditure

shares are exogenous.

By assuming that productivity is correlated within each sector, we can generate

a similar factor demand system, but with endogenous sectoral shares. Suppose

that productivity Asod(v) for good v in sector s is a random vector drawn from

a multivariate θ-Fréchet distribution with scale parameter Tsod and sector-level

correlation function,

Gsd(x1, . . . , xN) =

(
N∑
o=1

x1/(1−ρs)o

)1−ρs

, (32)

The parameter ρs measures the degree of correlation across origin countries in each

sector. Expenditure shares at the sector level are

πsod =

(
Psod
Psd

)− θ
1−ρs

(
Psd
Pd

)−θ
,

where Psod ≡ γT
1/θ
sodWo, Psd ≡ (

∑N
o=1 P

− θ
1−ρs

sod )−
1−ρs
θ , and Pd is the aggregate price

21A notable exception—with strong complementarities—is Fally and Sayre (2018). They build a
model of trade in scarce and spatially concentrated commodities which implies an import demand
system with very low elasticities of substitution. They estimate gains from trade that are much
larger than ACR.
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index in country d, Pd =
(∑

s P
−θ
sd

)−1/θ. This factor demand system matches (31)

for θ/(1−ρs) = θs, and Psod/γ = τsodWo/Aso. Sectoral shares depend on real sectoral

prices with elasticity of substitution θ. As the parameter θ goes to zero, this sectoral

CNCES model converges to match the Cobb-Douglas case in Caliendo and Parro

(2015).22,23

Applying the results from Corollary 3, country-level productivityAod(v) is distributed

multivariate θ-Fréchet with scale parameters given by Tod =
∑S

s=1 Tsod and correlation

function,

Gd(x1, · · · , xN) =
S∑
s=1

(
N∑
o=1

(ωsodxo)
1/(1−ρs)

)1−ρs

, (33)

with ωsod = Tsod/Tod. The inner sum indicates that when sectors are present in

multiple countries, they induce correlation across origins. The parameter ωsod
measures the extent to which sector smatters for trade flows from o to d—it reflects

sectoral trade costs and comparative advantage. In turn, aggregate expenditure

shares constitute a GEV factor demand system, as in (16).

5.2 Multinational Production

Assume that productivity depends on the home country j of a firm. The micro

correlation function is CNCES as in (32), and the implied macro correlation function

is as in (33) with s replaced by j for both functions. The parameter ρj measures

correlation across production locations for firms with home country j.

The expenditure share on goods produced in o for d by firms from j is

πjod =

(
Pjod
Pjd

)− θ
1−ρj

(
γ
Pjd
Pd

)−θ
, (34)

where Pjod ≡ T
−1/θ
jod Wo, and Pjd ≡ (

∑N
o=1 P

− θ
1−ρj

jod )−
1−ρj
θ . The expenditure share

on goods produced in o for d follows (16) with j replacing k. In this model,

production locations can use technology from a common home country, which

22The Cobb-Douglas restriction, however, entails that key cross-price elasticities characterizing
the macro demand system are not identified from between-sector variation, as pointed out by
Adao et al. (2017). With CNCES, both θ and ρs can be identified from between- and within-sector
variation, respectively.

23French (2016) uses CES expenditure shares across sectors, but he restricts the elasticities of
substitution for each sector to be the same, ρs = ρ.
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induces correlation. The factor demand system in (34) matches the one in Ramondo

and Rodríguez-Clare (2013) for ρj = ρ and T
−1/θ
jod = τodhjo/Aj .

5.3 Multiple Regions

Assume that each country n is composed of Rn regions. Denote productivity in

region r by Arnd(v). Productivity across regions within a country is symmetric

multivariate θ-Fréchet with correlation parameter ρn and scale Trnd, while productivity

is independent across countries. The within-n correlation function is

Gnd(x1, . . . , xRn) =

(
Rn∑
r=1

x1/(1−ρn)r

)1−ρn

. (35)

Workers are mobile across regions within a country and the country wage is Wn.

For import price index Prnd = γT
−1/θ
rnd Wn, the trade share from region r in n into

destination d is

πrnd =

(
Prnd
Pnd

)− θ
1−ρn P−θnd∑

n′ P
−θ
n′d

with Pnd =

(
Rn∑
r′=1

P
− θ

1−ρn
r′nd

)− 1−ρn
θ

. (36)

The first fraction on the right-hand side of (36) is the probability of importing from

region r in country n conditional on importing from some region in country n,

while the second fraction is the probability of importing from country n into d.

Because regions are unique to countries, country-level productivity—which is just

the maximum across regions within each country—is independent with scale Tnd =(∑Rn
r=1 T

1/(1−ρn)
rnd

)1−ρn
. In turn, the country-level factor demand system is CES,

πnd =
Rn∑
r=1

πrnd =
TndW

−θ
n∑

n′ Tn′dW
−θ
n′

.

By assuming that ρn = 0, for all n = 1, . . . , N , this case matches the one in Ramondo

et al. (2016) .
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5.4 Global Value Chains

We now show that the model of global value chains in Antràs and de Gortari

(2017) generates a GEV demand system. That is, it has the same macroeconomic

implications as a model without global value chains, but in which productivity

follows a multivariate θ-Fréchet distribution with an appropriately chosen correlation

function.

Assume that production is done in K stages, k = 1, . . . , K, where k = K is the final

stage of production (e.g., assembly), takes the Cobb-Douglas form, and labor is the

only factor of production. Let ` = [`(1), . . . , `(K)] index a path of locations across

production stages.

The unit cost of the input bundle used for goods produced following the production

path ` is given by

c` = W`(K)

K−1∏
k=1

(
W`(k)

W`(K)

)αk
,

with αk > 0 and
∑K−1

k=1 αk < 1. The unit cost of good v is c`/A`d(v). The variable

A`d(v) denotes the marginal product of the input bundle when good v is produced

along ` and delivered to d. This variable is distributed independent θ-Fréchet

across ` with scale T`d. The likelihood of a particular production path ` destined to

country d is given by

π`d =
T`dc

−θ
`∑

`′ T`′dc
−θ
`′

. (37)

This factor demand share matches the one in Antràs and de Gortari (2017) for T`d =

τ−θ`(K),dT
1−

∑K−1
k=1 αk

`(K)

∏K−1
k=1 (τ`(k),`(k+1))

−θαkTαk`(k) where τij is an iceberg cost of transporting

goods from country i to country j, and Ti is a productivity index for country i.

Aggregate trade shares from country o to d are obtained by summing π`d over

production paths with last production stage in country o—i.e., `(K) = o.

A macro model where productivity is multivariate θ-Fréchet with scale T`d and

correlation function given by

Gd(x1, · · · , xN) =
∑
`

x`(K)

K−1∏
k=1

(
x`(k)
x`(K)

)αk
,

implies a factor demand system equivalent to the the one in the model with global

value chains.
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5.5 Intermediate Inputs

Suppose that each variety is used to produce an aggregate intermediate input. In

turn, firms produce varieties using a Cobb-Douglas production function in labor

and this good. Hence, the unit cost of the input bundle in country o is

co = BW β
o P

1−β
o ,

where 0 < β ≤ 1 is the share of labor in production, B is a positive constant, and

Po is the price level in o. If productivity is independent Fréchet with scale Ao and

trade costs are τod, expenditure shares are

πod =
Aoτ

−θ
od c

−θ
o∑

o′ Ao′τ
−θ
o′dc

−θ
o′

. (38)

The price index in country d is defined implicitly by

Pd = γB

(∑
o

Aoτ
−θ
od (W β

o P
1−β
o )−θ

)− 1
θ

.

It is easy to see that a model without this input-output loop, but with a multivariate

θ-Fréchet distribution of productivity with scale Tod ≡ (Ao/τod)
θ/β and correlation

functions for each country implicitly defined by the system

Gd(x1, . . . , xN) =
N∑
o=1

xβoG
o(x1, . . . , xN)1−β,

generates the same factor demand system as the model with intermediate inputs.

6 Quantitative analysis

This section quantifies the gains from trade when productivity is correlated across

space. We consider a sectoral version of the Ricardian model of trade in Section 2,

which includes the cross-nested CES sectoral model in Section 5.1 as a special

case. The novelty of this quantitative model is that it captures Ricardo’s insight

that the degree of technological similarity determines the gains from trade. Based

exclusively on supply factors, this sectoral model allows for bilateral heterogeneity
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in trade elasticities based on observable variables (e.g. proximity).24 The choice of

this multi-sector model allows us to highlight the importance of using disaggregate

data to estimate elasticities that are key for macro counterfactuals—such as the

gains from trade.

6.1 Specification

Denote each sector by s = 1, . . . , S. We assume that within-sector productivity is

multivariate θ-Fréchet with scale Tsod and correlation function defined implicitly,

following Hanoch (1975) and Sato (1977), by

1 =
N∑
o=1

(
xso

Gsd(xs1, . . . , xsN)

) 1
1−ρsod

. (39)

The parameters, {ρsod}No=1, capture heterogeneity in correlation across origins within

sector s and destination d. The correlation function satisfying (39) results in iso-

elastic sectoral expenditure shares,

πsod ≡
Xsod

Xd

=
σsod

(
Psod
Psd

)−σsod
∑N

o′=1 σso′d

(
Pso′d
Psd

)−σso′d
(
Psd
Pd

)−θ
, (40)

where σsod ≡ θ
1−ρsod

. The sectoral price index, Psd, is defined implicitly as

1 =
∑
o

(
Psod
Psd

)−σsod
, (41)

with Psod ≡ γT
−1/θ
sod Wo. When ρsod = 0, productivity is independent across sectors

and origins, and we get the CES sectoral model with σsod = θ. When ρsod = ρs, we

get the sectoral CNCES model without spatial correlation, in Section 5.1.

Next, we compute correlation-adjusted sectoral expenditure shares and the gains

24As we show in Online Appendix O.2.1, one can allow for complementarity or substitutability
across sectors from preferences. In fact, the sectoral model we present below is isomorphic to a

model in which preferences across sectors are CES, u(C1d, . . . , CSd) =
(∑S

s=1 C
ε
ε+1

sd

) ε+1
ε

, with Csd
an aggregate of sectoral products, and with the parameter ε > −1 the expenditure elasticity of
substitution between sectors. Sectoral goods are substitutes as long as ε > 0 so that ε takes exactly
the role of θ below. Sectoral goods are complements if ε < 0, a possibility only allowed if the model
had a preferences interpretation. Our estimates suggest substitution, not complementarity, across
sectors—that is, our estimates of the parameter θ are positive.
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from trade in closed form. As we explain in Section 4.2, because disaggregate

adjusted shares are sufficient statistics for real import prices, we can calculate

the correlation correction by inverting the demand system. Dividing (40) by σsod,

summing over origins, and using (41) gives (Psod/Psd)
−σsod . Further using sectoral

shares, we get

π∗sod =

(
Xsod/σsod∑N

o′=1Xso′d/σso′d

)θ/σsod
Xsd

Xd

, (42)

where the first term on the right-hand side is (Psod/Psd)
−θ, and the second terms

is (Psd/Pd)
−θ. Using the results in Section 4.2, π∗od =

∑
s π
∗
sod, and further applying

(21), the gains from trade are

GTd =

(∑
s

π∗sod

)−1/θ
. (43)

Once we have estimates of σsod and θ, we can compute the gains from trade using

sectoral expenditure data. We turn next to the estimation of these parameters.

6.2 Estimation

We estimate our quantitative model using two sequential gravity regressions. The

first step uses variation in trade flows and tariffs across origin countries within

each sector to identify bilateral sectoral trade elasticities. The second step uses

variation across sectors and destination markets to identify the shape parameter θ.

Letting t index years, we impose additional assumptions on the structure of trade

costs and spatial correlation patterns. First, using the decomposition of scale parameters

into productivity and trade cost indices in Section 2.2, we can re-write sectoral

import prices indices as Psodt = γτsodtWot/Asot. Second, we assume that trade costs

depend on gravity covariates and tariffs,

ln τsodt = δ′sGeood + ln(1 + tsodt) + ε1sdt + ε2sodt. (44)

The variable tsodt is an ad-valorem effective tariff on sector-s goods shipped from

o to d at time t. Geood includes variables such as distance and time differences

between trading partners, as well as dummies indicating whether the two countries

share a border, language, and legal origins. We further allow for sector-specific
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coefficients, δs. The variable ε1sdt captures unobserved sector-destination-year components

of trade costs, while ε2sodt captures additional unobserved components of trade

costs across origin countries. Finally, we assume that elasticities have a sector

component and a spatial component proxied by a non-linear function of bilateral

distance,25

σsod = σ̄s + σ̃1Distod + σ̃2Dist2od. (45)

Using (40), we get our first-step within-sector gravity equation,

lnπsodt = Ssot +Dsdt +Bsod − σ̄s ln(1 + tsodt) + (αsot + βsdt − ln(1 + tsodt)) (σ̃1Distod + σ̃2Dist2od) + usodt,

(46)

where Ssot ≡ σ̄sαsot, Dsdt ≡ σ̄sβsdt − σ̄sε
1
sdt − ln

∑
o′ σso′d (Pso′dt/Psdt)

−σso′d , Bsod ≡
lnσsod − σsodδ′sGeood, αsot ≡ ln(Wot/Asot), βsdt ≡ ln(Psdt/γ), and usodt = −σsodε2sodt.
The coefficients from the interaction of tariffs with distance and distance squared

allow us to estimate distance-dependent elasticities of substitution. The exclusion

restriction for identification is that variation in tariffs across origin countries is

exogenous conditional on the covariates included in (46).

To estimate the between-sector elasticity, θ, we use a second-step regression that

relies on variation across sectors and inferred within-sector relative prices from

the first step. This second regression comes from destination d’s expenditure on

sector-s goods, Xsdt/Xdt = (Psdt/Pdt)
−θ, where we can write

ln
Psdt
Pdt

= ln
Psdt
Psodt

+ ln
Psodt
Pdt

= ln γ − ln
Psodt
Psdt

+ ln
Wot

Asot
− lnPdt + ln τsodt.

Given estimates of σsod from our first step, σ̂sod, we combine (40) with the definition

of the sectoral price index in (41) to get an estimate of Psodt/Psdt,

P̂sodt
Psdt

=

(
πsodt/σ̂sod∑N

o′=1 πso′dt/σ̂so′d

)− 1
σ̂sod

.

We estimate the parameter θ from the coefficient on ln(1 + tsodt) in the following

25This assumption is motivated by the literature that documents that technology diffusion
follows a spatial pattern. Keller (2002) estimates that a 1,200-kilometer increase in distance leads
to a 50 percent drop in technology diffusion. Similarly, Bottazzi and Peri (2003), using patent data,
find a strong geographic decay in technology diffusion between European regions. Comin et al.
(2013) document that the lower the spatial distance to another country’s technology, the higher the
rate of adoption. Relatedly, Keller and Yeaple (2013) link the gravity patterns observed in flows of
firms across countries to multinational firms transferring knowledge from their parent firm to their
affiliates abroad, with this transfer being easier to nearby locations.
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regression,

ln
Xsdt

Xdt

= asot + bdt + θ ln ̂(Psodt/Psdt)− θδ′sGeood − θ ln(1 + tsodt) + vsodt, (47)

where asot ≡ θ ln(Asot/Wot), bdt ≡ θ lnPdt, and vsodt ≡ −θ(ε1sdt + ε2sodt). Identification

comes from controlling for within-sector relative prices using our first-step estimates.

The identification assumption is that the unobserved component of trade costs is

orthogonal to tariffs conditional on the other covariates.

We estimate (46) and (47) by Ordinary Least Squares (OLS), using sectoral tariff

data constructed by aggregating 4-digit SITC tariff data, from COMTRADE, and

sectoral trade flow data, from the World Input-Output Database (WIOD), for 1996-

2007. Appendix H describes the data construction and sample restrictions in detail.

We consider three cases. First, we estimate the CES model where productivity is

independent across sectors and origin countries, ρsod = 0, and get an estimate of θ

from our first step (since σsod = θ). Second, we estimate the CNCES model where

correlation is only sector specific, but common across o and d, ρsod = ρs, so that

σsod = σ̄s. Finally, we allow for bilateral correlation within sector and estimate our

model with σsod specified in (45).

Appendix Figure I.1 presents OLS estimates of the elasticity of substitution, σsod,

as a function of geographical distance. The spatial pattern that emerges is clear:

Substitutability decreases with distance, indicating that productivity is less correlated

between countries that are further away from each other.26 Additionally, Appendix

Table I.1 presents our OLS estimates of θ for each of the three specifications.

We next use these estimates to perform various counterfactual exercises.

6.3 The Gains from Trade

Figure 1 shows the gains from trade calculated using the model with no correlation

(CES), with within-sector correlation (CNCES), and with bilateral distance-dependent

correlation, respectively. The figure shows that differences are large across countries

with similar self-trade shares. For instance, Mexico and Germany have a similar

self-trade share of around 60 percent. However, once we account for spatial heterogeneity

26Appendix Figure I.2 shows estimates for the within-sector elasticity of substitution in the
CNCES model with σsod = σ̄s.
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Figure 1: Gains from Trade and Self-Trade Share, 2007.
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Figure 2: Gains from Trade and Distance, 2007. Percent differences from CES.
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(b) CNCES
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in correlation, their gains are very different. In contrast, the CES model would

predict equal gains from trade for the two countries, while the CNCES model

delivers gains that are only slightly different.

Perhaps not surprisingly, Figure 2 shows that the model with bilateral correlation

implies that countries that are on average further away from their trading partners

have higher gains from trade, while the CNCES model—with sectoral elasticities
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that are constant over space—fails to do that. Our model interprets countries that

are further away from each other—with lower sectoral elasticities—as having more

dissimilar technologies and, hence, higher gains from trade. This result captures

Ricardo’s second insight that gains from trade are higher when countries trade

with technological dissimilar partners.

6.4 NAFTA, the Rise of Chinese Imports, and U.S. Protectionism

Next, we consider the implications of our quantitative model on various counterfactual

scenarios, and compare them with the implications from the CNCES model. We

use the procedure outlined in Section 3.

We first consider a scenario in which the United States increases trade costs with

Mexico and Canada simultaneously by x percent, with x ∈ [5, 50]. Figure 3 shows

the implications for real wages for the model with distance-dependent correlation

and the CNCES model. The difference between the two models comes from adding

bilateral correlation in addition to within-sector correlation. Differences in the

predicted real wages can be large, particularly for large changes in trade costs.

Correlation matters—and more so for large changes in trade costs—through two

potentially offsetting effects that shape the gains from trade: a price effect and a

wage effect. The price effect is direct: Increasing trade costs on Mexican goods

increases prices for U.S. consumers. The size of this effect is just the elasticity of

the price in the United States to the price of imports from Mexico, which equals the

expenditure share.27 In contrast, the wage effect is indirect and operates through

the market clearing condition for the United States,

WUSALUSA =
N∑
d=1

P−θUSA,dG
d
USA(P−θ1d , . . . , P

−θ
Nd)

Gd(P−θ1d , . . . , P
−θ
Nd)

Xd.

If the change in trade costs with Mexico induces U.S. consumers to substitute

expenditure away from Mexican goods and towards U.S. goods, labor demand

would increase and U.S. wages would increase. How rapidly expenditure shifts

away from Mexican goods and towards U.S. goods depends on the correlation

in technology. If the United States and Mexico were very close neighbors (high

correlation), then U.S. and Mexican goods would be substitutable and labor demand

27 ∂ lnPUSA
∂ ln τMEX,USA

=
∂ lnGUSA(P−θ1,USA,...,P

−θ
N,USA)−

1
θ

∂ lnPMEX,USA
=

P−θMEX,USAGMEX,USA

P−θUSA
= πMEX,USA.
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Figure 3: Effects of NAFTA Reversal on Real Wages.
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(b) Spatial Model
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Notes: Effects of an unilateral increase in trade costs for goods from Canada and Mexico into the United
States.

in the United States would be sensitive to changes in trade costs for imports from

Mexico. The wage effect would be large and would offset the losses coming from

increasing prices in the United States. In contrast, if trade between (most parts of)

Mexico and the United States occurs over long distances, accounting for spatial

correlation would reduce the substitutability between their goods. As a result, the

offsetting wage effect would be smaller in the model with heterogenous spatial

correlation. As we see in Figure 3, accounting for spatial correlation in productivity

leads to an increase in the losses from increasing U.S. trade costs with NAFTA

partners. The gap between the models depends on the size of the increase in

trade costs. For small changes in trade costs, the gap is small because general

equilibrium effects on wages are small, while the direct price effect—with an elasticity

equal to the expenditure share—is the same between models.

Our second counterfactual considers the implications of the rise of Chinese manufacturing

imports for the U.S. real wage. We compute the change in the U.S. real wage in each

year between the observed outcome (i.e., the real wage implied by each model

given the data) and a scenario in which we fix China’s trade costs at the level of

2003 for the sector "Machinery, Equipment, and Manufacturing n.e.c.". We choose

this sector because expenditure by the United States on manufacturing goods from

China increased threefold between 2003 and 2007 (see Appendix Figure I.3). Additionally,

this sector’s implied trade costs decrease sharply in the spatial model, but they are

relatively stable for the CNCES model, as shown in Figure 4a. For the remaining
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sectors, the implied trade costs between the two models are similar (not shown).28

Figure 4b shows the difference in real wages between the actual and counterfactual

scenario: The sharp decrease in trade costs implied by the spatial model from 2003

on translates into large increases in the U.S. real wage. The CNCES model fails

to capture the collapse in trade costs within this sector, and, as a consequence,

suggests lower gains for the United States from the rise of manufacturing imports

from China.

Our final counterfactual considers a series of trade protection exercises where the

United States unilaterally increases trade costs by five percent, one trading partner

at the time. We compute the counterfactual change in real wages for both the

spatial model and the CNCES model. The presence of bilateral correlation changes

the rankings of the countries that provoke the largest change in U.S. real wages.

While the CNCES model implies that real wages in the United States would decrease

the most with increases in trade costs from Canada, the spatial model predicts that

China would have the largest impact. The intuition behind these results is similar

to the intuition for other counterfactuals: The direct price effect is measured by

observed expenditure shares, while the indirect wage effect depends on substitutability

of goods between trading partners and, therefore, on the patterns of spatial correlation.

Summing up, these counterfactual exercises illustrate that the welfare implications

of a trade shock can change substantially once we account for richer patterns of

heterogeneity in correlation of productivity. These results reflect Ricardo’s insight

that differences in technological similarity across trade partners matter for the

gains from trade.

7 Conclusions

This paper is motivated by the old Ricardian idea that a country gains from trading

with those countries who are technologically dissimilar. We develop a Ricardian

theory of trade that allows for rich patterns of correlation in technology between

countries yet retains all the tractability of EK-type tools. Importantly, our structure

generates the class of GEV factor demand systems and, as such, approximates any

28Trade costs are calculated using the ratio (π∗
sodt/π

∗
soot)

−1/θ = τsodtPot/Pdt, for each s and t.
Since we can only uncover within-destination relative prices from our expenditure data, we use
GDP deflators from the Penn World Tables (9.0) to adjust this quantity by country price levels and
recover sectoral trade costs.
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Figure 4: The Rise of Chinese Manufacturing Imports.
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Ricardian model. The gains from trade coming from a GEV factor demand system

can be written as a simple correction to self-trade shares.

We provide a structure for technology, based on the adoption of innovations, that is

necessary and sufficient to generate max-stable multivariate Fréchet productivity

with a general dependence structure. Moreover, the theory, by relating macro

substitutability patterns to underlying factors, provides guidance on incorporating

standard micro estimates into macro counterfactual exercises.

Our quantitative application to a multi-sector trade model reveals that differences

in correlation across countries matter: Gains are much more heterogeneous across

countries than the case of independent productivity. These results suggest that our

framework has the potential to change quantitative conclusions in any literature

applying Fréchet tools.
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A Properties of Fréchet Random Variables

Lemma A.1. Let X be distributed Fréchet with scale A > 0 and shape α > 0. Then if

α > 1, E[X] = Γ(1 − 1/α)A1/α. Also, for any B > 0 and β > 0, BXβ is Fréchet with

scale ABα/β , shape α/β, and E[BXβ] = Γ(1− β/α)BAβ/α.

Proof.

E[X] =

∫ ∞
0

z
∂

∂z
P [X ≤ z] dz =

∫ ∞
0

z
∂

∂z
e−Az

−α
dz

=

∫ ∞
0

ze−Az
−α
αAz−α−1dz =

∫ ∞
0

t−1/αe−tdtA1/α = Γ(1− 1/α)A1/α,

and

P[BXβ ≤ z] = P[X ≤ (z/B)1/β] = e−A(z/B)−α/β = e−AB
α/βz−α/β .

The previous result implies that E[BXβ] = Γ(1− β/α)BAβ/α.

Lemma A.2. Let {Xi}Ni=1 be α-Fréchet with scale parameters {Ai}Ni=1 and correlation

function G : RN
+ → R+. Then, for any Bi ≥ 0 i = 1, . . . , N and β > 0, the random vector

{BiX
β
i }Ni=1 is α/β-Fréchet with scale parameters of {AiBα/β

i }Ni=1 and correlation function

G.

Proof.

P[BiX
β
i ≤ yi, i = 1, . . . , N ] = P[Xi ≤ (yi/Bi)

1/β, i = 1, . . . , N ]

= exp
[
−G(A1(y1/B1)

−α/β, . . . , AN(yN/BN)−α/β)
]

= exp
[
−G(A1B

α/β
1 y

−α/β
1 , . . . , ANB

α/β
N y

−α/β
N )

]
.

Lemma A.3. Let {Xi}Ni=1 be θ-Fréchet with scale parameters {Ti}Ni=1 and correlation

function G : RN
+ → R+. Then, the random variable maxi=1,...,N Xi is θ-Fréchet with

scale G(T1, . . . , TN). Moreover, let {Ij}Mj=1 be any partition of {1, . . . , N} and define the

random variable {Y1, . . . , YM} as

Yj = max
i∈Ij

Xi.
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Let j : {1, . . . , N} → {1, . . . ,M} be the unique mapping such that j = j(i) if and only if

i ∈ Ij . Define T̃j = G(T11{1 ∈ Ij}, . . . , TN1{N ∈ Ij}) and ωi = Ti
T̃j
1{i ∈ Ij}. Then,

1. {Y1, . . . , YM} is θ-Fréchet with correlation function H : RM
+ → R+ satisfying

H(z1, . . . , zM) = G(ω1zj(1), . . . , ωNzj(N));

2.

P
[
Yj = max

i
Xi

]
=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)
,

where Gi(x1, . . . , xN) ≡ ∂G(x1, . . . , xN)/∂xi;

3. For any j = 1, . . . ,M , the distribution of Yj conditional on the event Yj = maxi=1,...,N Xi

is identical to the distribution of maxi=1,...,N Xi,

P
[
Yj ≤ y | Yj = max

i
Xi

]
= e−G(T1,...,TN )y−θ = P

[
max

i=1,...,N
Xi ≤ y

]
.

Proof. We first prove part (1). Let {Ij}Mj=1 be a partition of {1, . . . , N} and define

Yj = maxi∈Ij Xi. Let the function j : {1, . . . , N} → {1, . . . ,M} satisfy i ∈ Ij(i) for

all i = 1, . . . , N . Note that there is a unique function satisfying this condition since

{Ij}Mj=1 is a partition of {1, . . . , N}. Then,

P [Yj ≤ yj,∀j = 1, . . . ,M ] = P [Xi ≤ yj,∀i ∈ Ij,∀j = 1, . . . ,M ]

= e−G(T1y
−θ
j(1)

,...,TNy
−θ
j(N)

).

Therefore {Y1, . . . , YM} is θ-Fréchet. Its scale parameters are

lim
yk→∞,k 6=j

G(T1y
−θ
j(1), . . . , TNy

−θ
j(N)) = G(T11{1 ∈ Ij}, . . . , TN1{N ∈ Ij}) = T̃j,

and its correlation function must then be

G(T1/T̃j(1)zj(1), . . . , TN/T̃j(N)zj(N)) = G(ω1zj(1), . . . , ωNzj(N)) = H(z1, . . . , zM).

Note that if we take M = 1 so that I1 = {1, . . . , N}we get

P
[

max
i=1,...,N

Xi ≤ y

]
= P [Y1 ≤ y] = P [Yj ≤ y,∀j = 1, . . . ,M ]

= e−G(T1y−θ,...,TNy
−θ) = e−G(T1,...,TN )y−θ .
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That is, maxi=1,...,N Xi is a θ-Fréchet random variable with scale G(T1, . . . , TN) and

shape θ.

Next we prove part (2). We have

P
[
max
i
Xi ≤ y and Yj = max

i
Xi

]
= P

[
Yj ≤ y and Yj = max

i
Xi

]
= P [Yj ≤ y and Xi ≤ Yj,∀i = 1, . . . , N ] = P [Yj ≤ y and Xi ≤ Yj,∀i /∈ Ij]

=

∫ y

0

P [Xi ≤ t,∀i /∈ Ij | Yj = t]
∂

∂t
P[Yj ≤ t]dt

=

∫ y

0

∂

∂t
P [Xi ≤ z,∀i /∈ Ij, and Xi ≤ t,∀i ∈ Ij]|z=t dt

=

∫ y

0

∑
i∈Ij

∂

∂yi
e−G(T1y

−θ
1 ,...,TNy

−θ
N )
∣∣∣
yi=t,∀i=1,...,N

dt

=

∫ y

0

∑
i∈Ij

e−G(T1y
−θ
1 ,...,TNy

−θ
N )Gi(T1y

−θ
1 , . . . , TNy

−θ
N )Tiθy

−θ−1
i

∣∣∣
yi=t,∀i=1,...,N

dt

=

∫ y

0

e−G(T1,...,TN )t−θ
∑
i∈Ij

TiGi(T1, . . . , TN)θt−θ−1dt

=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)

∫ y

0

e−G(T1,...,TN )t−θG(T1, . . . , TN)θt−θ−1dt

=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)
e−G(T1,...,TN )y−θ ,

where Gi(x1, . . . , xN) = ∂G(x1, . . . , xN)/∂xi. Let y →∞ to get

P
[
Yj = max

i
Xi

]
=

∑
i∈Ij TiGi(T1, . . . , TN)

G(T1, . . . , TN)
.

Finally, we can prove part (3) using the previous results:

P
[
max
i
Xi ≤ y | Yj = max

i
Xi

]
=

P [maxiXi ≤ y and Yj = maxiXi]

P [Yj = maxiXi]

=

∑
i∈Ij

TiGi(T1,...,TN )

G(T1,...,TN )
e−G(T1,...,TN )z−θ∑

i∈Ij
TiGi(T1,...,TN )

G(T1,...,TN )

= e−G(T1,...,TN )z−θ

= P
[
max
i
Xi ≤ y

]
.
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B Proof of Lemma 1

First, we show that if productivity is θ-Fréchet, then there must exist a correlation

function Gd : RN
+ → R+ such that (5) is the joint distribution of productivity across

origins.

Consider any (x1, . . . , xN) ∈ RN
+ . Then x1/θo ≥ 0 for each o. From the definition of a

multivariate θ-Fréchet random variable, the random variable maxo=1,...,N x
1/θ
o Aod(v)

must be distributed as a θ-Fréchet random variable. That is, there exists some

T > 0 such that

P
[

max
o=1,...,N

x1/θo Aod(v) ≤ a

]
= e−Ta

−θ
.

Let T d : RN
+ → R+ be the map (x1, . . . , xN) 7→ T . We then have that for any

(x1, . . . , xN) ∈ RN
+

P
[

max
o=1,...,N

x1/θo Aod(v) ≤ a

]
= exp

[
−T d(x1, . . . , xN)a−θ

]
.

Note that the joint distribution of productivity can be written as

P[A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = P[A1d(v)/a1 ≤ 1, . . . , ANd(v)/aN ≤ 1]

= P
[

max
o=1,...,N

Aod(v)/ao ≤ 1

]
.

Choosing xo = a−θo and a = 1 we can use the properties of our function T d and get

P
[

max
o=1,...,N

Aod(v)/ao ≤ 1

]
= exp

[
−T d(a−θ1 , . . . , a−θN )

]
.

Therefore, the joint distribution of productivity satisfies

P[A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = e−G
d(T1da

−θ
1 ,...,TNda

−θ
N ),

for the function Gd : RN
+ → R+ defined by (x1, . . . , xN) 7→ T d(x1/T1d, . . . , xN/TNd).

We now show that this Gd is a correlation function. First we show that it must be
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homogenous. Fix (x1, . . . , xN) ∈ RN
+ and let λ > 0. We have

exp
[
−Gd(λx1, . . . , λxN)

]
= P[T1dA1d(v)−θ ≥ λx1, . . . , TNdANd(v)−θ ≥ λxN ]

= P[(x1/T1d)
1/θA1d(v) ≤ λ−1/θ, . . . , (xN/TNd)

−1/θANd(v) ≤ λ−1/θ]

= P[ max
o=1,...,N

(xo/Tod)
−1/θAod(v) ≤ λ−1/θ]

= exp
[
−T d(x1/T1d, . . . , xN/TNd)λ

]
= exp

[
−λGd(x1, . . . , xN)

]
,

so that Gd(λx1, . . . , λxN) = λGd(x1, . . . , xN) as desired.

Now consider the normalization restriction. Fix o. The distribution of Aod(v) is

exp
(
−Toda−θ

)
= P[Aod(v) ≤ a] = P

[
max

n=1,...,N
x1/θn And(v) ≤ a

]
,

for the choice of xn = 0 for n 6= o and xo = 1. But then,

exp
(
−Toda−θ

)
= exp

[
−T d(x1, . . . , xN)a−θ

]
= exp

[
−T d(0, . . . , 0, 1, 0, . . . , 0)a−θ

]
= exp

[
−Gd(0, . . . , 0, Tod, 0, . . . , 0)a−θ

]
= exp

[
−Gd(0, . . . , 0, 1, 0, . . . , 0)Toda

−θ] ,
where the last equality comes from the homogeneity of Gd. We therefore must

have Gd(0, . . . , 0, 1, 0, . . . , 0) = 1 as desired.

The unboundedness restriction follows from the limiting properties of joint distributions.

Fix o. Then,

lim
xo→∞

e−G
d(x1,...,xN ) = lim

xo→∞
P[T1dA1d(v)−θ ≥ x1, . . . , ANd(v) ≥ xN ]

= lim
xo→∞

P[T
−1/θ
1d A1d(v) ≤ x1, . . . , T

−1/θ
Nd ANd(v) ≤ xN ] = 0.

Therefore, limxo→∞G
d(x1, . . . , xN) =∞ as desired.

Finally, the differentiability restrictions are necessary because the productivity distribution

is continuous and therefore has a joint density function. Smith (1984) shows that

the differentiability condition is necessary for this joint density to exist.

Therefore, the functionGd must be a correlation function, and we have proven that
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if productivity is θ-Fréchet then there exists a correlation function Gd : RN
+ → R+

such that (5) holds.

We now prove the converse. Let Tod > 0 for each o = 1, . . . , N , and let Gd : RN
+ →

R+ be a correlation function. Suppose that {Aod(v)}No=1 satisfies

P[A1d(v) ≤ a1, . . . , ANd(v) ≤ aN ] = exp
[
−Gd(Toda

−θ
1 , . . . , TNda

−θ
N )
]
.

We want to show that {Aod(v)}No=1 is θ-Fréchet. Let (x1, . . . , xN) ∈ RN
+ and consider

the distribution of maxo=1,...,N xoAod(v),

P[ max
o=1,...,N

xoAod(v) ≤ a] = P[x1A1d(v) ≤ a, . . . , xNANd(v) ≤ a]

= P[A1d(v) ≤ a/x1, . . . , ANd(v) ≤ a/xN ]

= exp
[
−Gd(Todx

θ
1a
−θ, . . . , TNdx

θ
Na
−θ)
]

= exp
[
−Gd(Todx

θ
1, . . . , TNdx

θ
N)a−θ

]
,

where the last equality uses the homogeneity ofGd. Therefore, maxo=1,...,N xoAod(v)

is a θ-Fréchet random variable with scale parameter Gd(Todx
θ
1, . . . , TNdx

θ
N). As a

result, we conclude that {Aod(v)}No=1 is θ-Fréchet.

C Proof of Proposition 1

Perfect competition implies that potential import prices are

Pod(v) =
Wo

Aod(v)
.

Then,

P[P1d(v) ≥ p1, . . . , PNd(v) ≥ pN ] = P[P1d(v)/W1 ≥ p1/W1, . . . , PNd(v)/WN ≥ pN/WN ]

= P[1/A1d(v) ≥ p1/W1, . . . , 1/ANd(v) ≥ pN/WN ]

= P[A1d(v) ≤ W1/p1, . . . , ANd(v) ≤ WN/pN ]

= exp
[
−Gd(T1dW

−θ
1 pθ1, . . . , TNdW

−θ
N pθn)

]
.
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D Proof of Proposition 2

The proof follows directly from the properties of θ-Fréchet random variables. The

probability that variety v is imported by destination d from origin o is

πod ≡ P[Pod(v) ≥ Po′d(v) ∀o′ 6= o] =
TodW

−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

,

by Proposition 1 and Lemma A.3. The distribution of prices among goods imported

by destination d from country o satisfies

P
[
Pod(v) ≥ p | Pod(v) = min

o′=1,...,N
Po′d(v)

]
= P

[
min

o′=1,...,N
Po′d(v) ≥ p

]
= e−G(T1dW

−θ
1 ,...,TNdW

−θ
N )pθ ,

by Proposition 1 and Lemma A.3. The price index in destination d is then

Pd =

[∫ 1

0

min
o=1,...,N

Pod(v)−εdv
]− 1

ε

=

[
E
(

min
o=1,...,N

Pod(v)−ε
)]− 1

ε

= γGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)− 1
θ ,

where γ = Γ
(
θ−ε
θ

)− 1
ε , Γ(·) is the gamma function, and the last equality follows

from the fact that mino=1,...,N Pod(v)−ε = (maxo=1,...,N 1/Pod(v))ε is a Fréchet random

variable with scaleGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)
and shape θ/ε > 1 due to the assumption

that θ > ε and due to Lemma A.1.

E Proof of Proposition 3

First, the set of varieties from o imported to d is {v ∈ [0, 1] | Wo/Aod(v) = mino′Wo′/Ao′d(v)}
and for any variety in this set, expenditure is

Xd(v) =

(
Wo/Aod(v)

Pd

)−ε
Xd.

Any v not in this set must get imported from a different origin. The price index is

Pd =

[∫ 1

0

(
min
o′
Wo′/Ao′d(v)

)−ε
dv
]− 1

ε

,
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so that we can write the expenditure share as

πod(W, Xd) ≡
∫ 1

0

Xd(v)

Xd

1
{
Wo/Aod(v) = min

o′
Wo′/Ao′d(v)

}
dv

=

∫ 1

0
(Wo/Aod(v))−ε1 {Wo/Aod(v) = mino′Wo′/Ao′d(v)}dv∫ 1

0
(mino′Wo′/Ao′d(v))−ε dv

=
E [(Wo/Aod(v))−ε1 {Wo/Aod(v) = mino′Wo′/Ao′d(v)}]

E
[
(mino′Wo′/Ao′d(v))−ε

] .

We need to show that there exists a correlation function that approximates this

factor demand system. The proof is similar to the proof of Theorem 1 in Dagsvik

(1995), differing in the functional form of the demand system to be approximated.

We start by constructing an approximating GEV factor demand system that generates

the same price level as multiplying productivity by independent Fréchet noise.

Consider the random vector {Aod(v)Uod(v)}No=1 whereUod(v) is some θ-Fréchet noise

with unit scale that is independent across o and independent of of {Aod(v)}No=1.

Under this modified productivity distribution, potential import prices are Pod(v) =

Wo/(Aod(v)Uod(v)) and {Pod(v)−ε}No=1 | {Aod}No=1 is θ/ε-Fréchet with scale (Aod(v)/Wo)
θ

by Lemma A.1 and independent across o. As a consequence, Pd(v)−ε | {Aod}No=1 is

also θ/ε-Fréchet and has scale
∑N

o=1(Aod(v)/Wo)
θ. The associated price level is

Pd =
{
E
[
E
(
Pd(v)−ε | {Aod(v)}No=1

)]}− 1
ε

= E

Γ(1− ε/θ)

(
N∑
o=1

(Ad(v)/Wo)
θ

) ε
θ

− 1
ε

= Γ(1− ε/θ)−
1
εGd(T1dW

−θ
1 , . . . , TNdW

−θ
N )−

1
θ ,

for Tod ≡ EAod(v)θ, and

Gd(x1, . . . , xN) ≡

E(∑
o

Aod(v)θxo/Tod

) ε
θ

 θ
ε

.

Note that this price level is identical to assuming that productivity is θ-Fréchet with

scale Tod and correlation function Gd. It also approximates the true price level. In
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particular,

Pd =

Γ

(
θ − ε
θ

)
E

(∑
o

(Aod(v)/Wo)
θ

) ε
θ

− 1
ε

θ→∞→
[
E
(

max
o
Aod(v)/Wo

)ε]− 1
ε

=

[
E
(

min
o
Wo/Aod(v)

)−ε]− 1
ε

.

That is, the price level implied by either multiplying by θ-Fréchet noise or by

assuming θ-Fréchet productivity with this correlation function converges point-

wise to the price level associated with the true productivity distribution.

The implied GEV factor demand system is

πGEVod (W, Xd; θ) =
TodW

−θ
o Gd

o(T1dW
−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

=
E
[(∑

o′(Ao′d(v)/Wo′)
θ
) ε
θ
−1

(Aod(v)/Wo)
θ
]

E (
∑

o′(Ao′d(v)/Wo′)θ)
ε
θ

θ→∞→ E [(Wo/Aod(v))−ε1 {Wo/Aod(v) = mino′Wo′/Ao′d(v)}]
E
[
(mino′Wo′/Ao′d(v))−ε

] = πod(W, Xd).

That is, the implied GEV factor demand system converges point-wise to the true

demand system. To establish uniform convergence across (W, Xd) ∈ K, for K ⊂
RN+1

+ compact, note that if the sequence {πGEVod (W, Xd; θj)}∞j=1 is convergent, there

exists a positive sequence {θk}∞k=1 that diverges such that {πGEVod (W, Xd; θk)}∞k=1

is monotone and converges. Then, since πod(W, Xd) is continuous, we can apply

Theorem 7.13 in Rudin et al. (1964) to establish uniform convergence.
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F Proof of Theorem 1

Sufficiency follows from Campbell’s theorem (see Kingman (1992)). Under Assumption 1,

P [Aod(v) ≤ ao,∀o = 1, . . . , N ]

P
[

max
i=1,2,...

Zi(v)Aod(χi(v)) ≤ ao,∀o = 1, . . . , N

]
P [Zi(v)Aod(χi(v)) ≤ ao,∀o = 1, . . . , N, ∀i = 1, 2, . . . ]

P
[
Zi(v) ≤ min

o=1,...,N
ao/Aod(χi(v)), ∀i = 1, 2, . . .

]
P
[
Zi(v) > min

o=1,...,N
ao/Aod(χi(v)), for no i = 1, 2, . . .

]
.

This last expression is a void probability. Under Assumption 2 we can compute it

by applying Campbell’s theorem,

P
[
Zi(v) > min

o=1,...,N
ao/Aod(χi(v)), for no i = 1, 2, . . .

]
= exp

[
−
∫
X

∫ ∞
mino=1,...,N ao/Aod(χ)

θz−θ−1dzdµ(χ)

]

= exp

[
−
∫
X

max
o=1,...,N

Aod(χ)θa−θo dµ(χ)

]
= exp

[
−
∫
X

max
o=1,...,N

Aod(χ)θ

Tod
Toda

−θ
o dµ(χ)

]
,

for Tod ≡
∫
X Aod(χ)θdµ(χ). This final expression is the joint distribution of a multivariate

θ-Fréchet random variable with scale parameters Tod for each o = 1, . . . , N and

correlation function Gd(x1, . . . , xK) ≡
∫
X maxo=1,...,N

Aod(χ)
θ

Tod
xodµ(χ).

Necessity follows from Theorem 1 in Kabluchko (2009), which states that any

θ-Fréchet process has a spectral representation. Let {Aod}o=1,...,N be a θ-Fréchet

process on {1, . . . , N}—that is, a multivariate θ-Fréchet random vector. Then there

exists a σ-finite measure space (X ,F , µ), spectral functions {Aod(χ)}o=1,...,N with∫
X Aod(χ)dχ <∞, and a Poisson process {Zi, χi}i=1,2,... with intensity θz−θ−1dzdµ(χ)

such that Aod = maxi=1,2,... ZiAod(χi). Taking {Aod(v)}o=1,...,N across v ∈ [0, 1] to be

i.i.d. copies of {Aod}o=1,...,N completes the proof.
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G Generalized Mixed CES

We now provide a concrete example of applying Corollary 2 to generate a generalized

mixed-CES factor demand system. This model includes the mixed-CES model estimated

in Adao et al. (2017) as a special case, as well as many existing models based on

EK, as presented in Section 5.

We get the generalized mixed-CES factor demand system by specifying a particular

structure for the innovation’s attributes. Let χi(v) = {ki(v), σi(v), βi(v), νi(v)}where

ki(v) ∈ {1, . . . , K} is a discrete characteristic (e.g., a sector) and assume thatAod(ki(v), εi(v)) |
σi(v) = σ, βi(v) = β, ki(v) = k is σ-Fréchet and independent across o with scale

equal to Γ(1−θ/σ)−σ/θeβ
′xod+ukod . The random coefficient σi(v) parameterizes within-

k dispersion in spatial applicability, and βi(v) is a vector of random coefficients for

the dependence of spatial applicability on a vector of covariates, xod.

Under this assumption, the distribution of productivity conditional on σi(v) =

σ, βi(v) = β, ki(v) = k is θ-Fréchet with CES correlation function with correlation

coefficient ρ(σ) = 1− θ/σ and scale

Tkod(σ, β) = e(1−ρ(σ))(β
′xod+ukod).

Within-(k, σ, β) expenditure shares are

Xkod(σ, β)∑N
o′=1Xko′d(σ, β)

=
eβ
′xod+ukodW−σ

o∑N
o′=1 e

β′xo′d+uko′dW−σ
o′

,

while between-(σ, k, β) expenditure levels are

N∑
o′=1

Xko′d(σ, β) =
Pkd(σ, β)−θf(σ, β | k)mk∑K

k=1

∫
RJ
∫∞
θ
Pkd(σ, β)−θf(σ, β | k)mkdσdβ

Xd,

where Pkd(σ, β) ≡ γ
[∑N

o=1 e
β′xod+ukodW−σ

o

]−1/σ
.

In the limit as θ → 0, the density of expenditure across characteristics converges

to the likelihood that an innovation has ki(v) = (σ, β, k). As a result, the share of

expenditure by d on goods produced in o with innovations of type k is mixed-CES,

Xkod

Xd

=

∫
RJ

∫ ∞
0

eβ
′xod+ukodW−σ

o∑N
o′=1 e

β′xo′d+uko′dW−σ
o′

f(σ, β | k)dσdβ
mk∑K
k′=1mk′

,
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where Xkod ≡
∫
RJ
∫∞
0
Xkod(σ, β)dσdβ. This limiting case corresponds to the mixed-

CES factor demand system used by Adao et al. (2017), forK = 1, and xod containing

origin and destination dummy variables as well as the logarithm of per capita

income in country o.
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H Data Construction

For our quantitative analysis, we use trade flow data from the World Input-Output

Database (WIOD), tariff data from the United Nations Comtrade Database, and

gravity covariates from Centre D’Études Prospectives et d’Informations Internationales

(CEPII). When calculating the trade costs implied by this data, we use GDP deflator

data from the Penn World Tables (PWT), version 9.0.

H.1 Map from SITC Codes to WIOD Sectors

The WIOD data allows us to compute the total value of trade between a sample of

40 countries across 25 sectors from 1995 through 2011. The sector classification in

this data set comes from aggregating underlying data classified according to the

third revision of the International Standard Industrial Classification (ISIC). The

Comtrade tariff data is classified according to the second revision of the Standard

International Trade Classification (SITC). In order to merge these data sources, we

construct a mapping that assigns SITC codes to WIOD sectors.

First, we match ISIC and SITC definitions using existing correspondences of each

standard to Harmonized System (HS) product definitions. These correspondences

come from the World Bank’s World Integrated Trade Solution (WITS).29 This merge

matches on 5,701 products out of 5,705 total HS products. We drop the four unmatched

products. This creates a HS product dataset with 764 SITC codes and 35 ISIC codes.

Note that there are 925 SITC codes in the tariff data to be classified into WIOD

sectors.

Next, we map the ISIC definitions in this merge to the 25 WIOD sectors using the

relation between ISIC codes and the WIOD sectors. This leaves products in the

ISIC code 99 ("Goods not elsewhere classified") without a WIOD sector definition.

At this point, there are two issues we must address: (1) classifying SITC codes that

have products in multiple WIOD sectors; and (2) classifying the SITC codes in the

tariff data that were either matched to ISIC code 99 or were not matched to any

ISIC code. We use a most-common-sector rule and manual classification based on

SITC codes to resolve these two issues and arrive at a mapping from SITC codes to

WIOD sectors.
29They are available at https://wits.worldbank.org/product_concordance.html.
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We proceed as follows. First, we determine the most common WIOD sector classification

(including "unclassified") at the HS product level of each 4-digit SITC code within

the merge. We re-classify all products within an 4-digit SITC sector as belonging to

the most common WIOD sector, and break ties manually. This step resolves issue

(1) and leaves us with 764 4-digit SITC codes mapped to a unique WIOD sector,

and 161 4-digit SITC codes left unclassified.

Second, we resolve issue (2) by refining the map by using the most common classification

of HS products within each 3-digit SITC code, again breaking ties manually. In

this step, we only use the most-common classification at the 3 digit level to classify

previously unclassified 4-digit SITC codes, filling in the map. This step mostly

resolves issue (2), leaving only 12 4-digit SITC codes unclassified. We complete the

map by manually classifying ten of these remaining codes, while choosing to leave

codes 9110 ("Postal packages not classified according to kind") and 9310 ("Special

transactions, commodity not classified according to class") unclassified.

H.2 Construction of Sectoral Trade Flow and Tariff Data

With this mapping from (all but two) 4-digit SITC codes to WIOD sectors, we next

aggregate the Comtrade tariff data to the WIOD sector level. First, we compute

the average applied tariff and total value of trade within the Comtrade data by

SITC code, exporter, importer, and year. We then compute the average tariff and

total trade value by WIOD sector, exporter, importer, and year, using the value of

total trade in each SITC code and year as weights when calculating averages, and

dropping codes 9110 and 9310.

Next, we merge these data with the WIOD data. The WIOD data give us the

amount of imports by each sector and country across sectors of all other countries.

We first aggregate this input-output data to get total expenditure by each importer

across the sectors of each exporting country. This aggregation gives a balanced

bilateral dataset of trade flows across 25 sectors for each exporter-importer pair

from 1995 to 2011. The data contains 40 countries and a rest-of-world aggregate

(1,681 pairs per sector, including self trade).

We merge this data with our tariff data at the WIOD sector, exporter, importer,

and year level. The two dataset intersect from 1995 through 2007. For each year,

we drop any observations in the tariff data that are not in the WIOD data. This
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eliminates countries without WIOD bilateral data. We set tariffs for self trade

to zero. Additionally, we have no tariff data for the rest-of-world aggregate and

Romania, and limited data for Taiwan. We drop these three entities leaving us with

a sample of bilateral trade flows and tariffs between 38 countries. Finally, we do

not have tariff data for sectors 15 through 25 (non-traded sectors), so we also drop

them from the data.

The resulting dataset has many trade zeros and missing tariff observations. To

address this potential issue, we aggregate together WIOD sectors to get the final

ten sector definitions we use in our quantitative analysis. Specifically, we combine

the "Coke, Refined Petroleum and Nuclear Fuel" and "Chemicals, Rubber, and

Plastics" WIOD sectors to form our "Fuel, Chemicals, Rubber, and Plastics" sector.

Also, we combine the "Machinery, n.e.c.," "Electrical and Optical Equipment," "Transport

Equipment," and "Manufacturing, Nec; Recycling" sectors to get our "Machinery,

Equipment, and Manufacturing n.e.c." sector. We compute the aggregate value

of trade within each of our sectors across bilateral pairs and years, and compute

average tariffs for each of our sectors across bilateral pairs and years using total

global trade in each WIOD sector and year as weights.

This aggregation results in a balanced dataset of trade flows and tariffs across 10

sectors and 38 countries (1,444 exporter-importer pairs) from 1995 to 2007. The

share of trade zeros is 1.3 percent, and the share of missing tariff observations is

8.92 percent. Conditional on zero trade, the probability of tariffs being missing is

42.9 percent and conditional on a missing tariff, the probability of a trade zero is

6.3 percent. We finally merge in the CEPII data on geography and other standard

gravity covariates.

I Additional Tables and Figures
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Table I.1: Estimates of the trade elasticity θ, OLS.

CES Cross-nested CES Spatial
Dep variable ln πsodt ln

∑
o πsodt ln

∑
o πsodt

(1) (2) (3)

ln(1 + tsodt) 5.523 0.607 0.489
(0.020)∗∗∗ (0.025)∗∗∗ (0.024)∗∗∗

x̂cncessodt X

x̂spatialsodt X

Sector-Covariate Interactions X X X
Sector-Origin-Year Effects X X X
Sector-Destination-Year Effects X
Destination-Year Effects X X

Observations 174,201 174,201 174,201
R-squared 0.82 0.74 0.73
F-statistic 759.2 1,485.4 427.8

Notes: Results in column (1) are from estimating (46) by OLS, assuming that ρsod = 0 so that σsod =

θ. Results in columns (2) and (3) are from estimating (47) by OLS, with x̂lsodt = ln ̂(Psod/Psd), l =
spatial, cnces, from the first-stage gravity equation in (46). In column (2), (45) collapses to σsod = σ̄s
so that ρsod = ρs, for all o, d. Robust standard errors in parenthesis with levels of significance denoted
by *** p < 0.01, and ** p < 0.05 and * p<0.1.
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Figure I.1: Elasticities of Substitution and Distance, by sector.
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Notes: Results from estimating (46) by OLS.

62



Figure I.2: Elasticity of substitution, by sector. Cross-nested CES estimation.
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Figure I.3: U.S. imports from China in "Machinery, Equipment, & Manuf n.e.c.".
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