

Enabling Fine-Grained Spatial Multitasking on Systolic-Array NPUs Using Dataflow Mirroring

Jinwoo Choi, Yeonan Ha, Jounghoo Lee,

Sangsu Lee, Jinho Lee, Hanhwi Jang, and Youngsok Kim Yonsei University

IEEE Transactions and Computers (TC), Aug. 2023

Systolic-Array NPUs

- Run Neural Network (NN) operations on a systolic array
 - A two-dimensional array of Processing Elements (PEs)
 - PEs execute one Multiply-ACcumulate (MAC) operation per cycle.
- Suited for matrix multiplication, a key operation in NNs
 - e.g., convolutional and fully-connected layers

Underutilized Hardware Resource

- Prior NPUs allocate systolic array to **one NN at a time**.
 - e.g., single-NN execution, temporal multitasking

NPhaGO

GOOD

- Highly difficult to fully utilize NPU with only a single NN
 - # of output channels \geq PE width, Filter size \geq PE height
- Prior NPU shows the low HW resource utilization
 - 22.0% of PEs and 33.4% of the off-chip DRAM bandwidth

□PEs ■Off-chip DRAM Bandwidth

We need **Spatial Multitasking** to improve HW utilization!

Benchm

Spatial Multitasking on NPUs

- Co-locate multiple NNs on the same systolic array
- Advantages
 - Higher HW utilization
 - Higher multi-program performance
 - System throughput (STP)
 - Average normalized turn-around time (ANTT)

Limitations of Prior Work

Coarse-grained systolic array allocation

- Partition the systolic array into multiple sub-arrays
 - e.g., 128x128 systolic array \rightarrow 4 64x64 sub-arrays
- Allocate the sub-arrays to co-located NNs

• High hardware cost

• e.g., all-to-all high radix crossbar

Need a new flexible, fine-grained systolic-array allocation for **fine-grained** spatial multitasking on NPUs

Lack of Shared NPU Resource Modeling

- The optimal NPU resource allocation is crucial
 - Allocate to maximize the performance benefits of spatial multitasking
 - Consider DNN's characteristic
- Existing performance model results in sub-optimal alloc.
 - It achieves much lower STP than the optimal allocation

Optimal

• It doesn't consider the contention on the NPU resource

XPREMA

-Worst

Goal: "Fine-Grained" Multitasking

- Fine-grained systolic-array allocation granularity
 - Systolic array allocation should not be bounded by sub-arrays.
- Low hardware implementation cost
 - Easily employ the new architecture to the existing NPUs
- Support a high number of co-located NNs
 - Maximize the performance of spatial multitasking

High accurate performance model

• Find optimal allocation, considering HW resource contention

Key Idea: Reverse the Dataflows

- Fine-grained systolic array allocation granularity
 - Input activation mirroring for PE column distribution
 - **Partial sum mirroring** for PE row distribution
- Low hardware implementation costs
 - Only 7.29% overhead for the 128x128 Google TPU

• Support up to 4 NNs

 Reverse the dataflows of the input activations and partial sums at the same time

Weight-Stationary Dataflow

• Each filter weight remains stationary at one PE.

Stream iacts left-to-right and psums top-to-bottom

- Each PE row processes one input patch.
- Each PE column processes one output channel.

Partial sum

PE Column Distribution

Reverse the iact dataflows of co-located NNs

- One NN's iacts flow left-to-right and the other's flow right-to-left.
- Both NNs' psums flow top-to-bottom.

PE Row Distribution

• Reverse the psum dataflows of co-located NNs

- Both NNs' iacts flow left-to-right.
- One NN's psums flow upwards and the other's flow downwards.

Input activation

Partial sum

Dataflow Mirroring

• Up to 4 NNs by enabling both iact and psum mirroring Fine-grained allocation of both PE rows and columns

Partial sum

DM-NPU: NPU Architecture

- Extend the baseline Google TPU with dataflow mirroring
 - Bidirectional bus, additional accumulators, extended SDS
 - Only 7.29% overhead on top of 7-nm 128x128 TPU

DM-Perf: Performance Model

• PE Contention

• Calculate computation latency using tile's size

• Off-chip DRAM BW contention

- Consider DRAM access characteristics and the contention on DRAM BW
- We use the profiled DRAM utilization as the layer's DRAM utilization
- On-chip GB contention
 - Define three cases following GB capacity
 - Non-prefetch, data reuse, and prefetch
 - Differently calculate execution latency following the case

High Performance Computing Platforms Lab @ College of Computing, Yonsei University

Algorithm 1 DM-Perf

1:	GB: Allocated GB capacity
2:	BW_{DRAM} : off-chip DRAM Bandwidth
3:	Util DRAM: Utilization of DRAM of laver
4:	M. K. N: Im ₂ col data size of laver
5:	<i>m</i> , <i>k</i> , <i>n</i> : Tiled im2col data of tile
6:	$C_{latency}$: Compute latency of tile
7:	$M_{latency}$: Memory fetch latency of tile
8:	end_{iact} , $start_{iact}$: End, start address of input activation of tile
9:	Time _{estimated} : Total execution latency of a DNN
10:	procedure DM-PERF.ESTIMATEEXECTIME
11:	$Time_{estimated} = 0$
12:	for Tiles in Layers do
13:	$GB_{Leftover} = GB$
14:	$Data_{Laver} = M \times K + K \times N$
15:	for each (m,k,n) in Tiles do
16:	$C_{latency} = m + 2 \times k + n$
17:	$iact_{size} = end_{iact} - start_{iact}$
18:	$M_{latency} = (iact_{size} + k \times m)/(BW_{DRAM} \times Util_{DRAM})$
19:	if $GB_{Leftover} \leq 0$ then
20:	$Time_{estimated} + = (C_{latency} + M_{latency})$
21:	else if $(GB_{Leftover} > 0)$ and $(Data_{Layer} < GB)$ then
22:	$Time_{estimated} + = C_{latency}$
23:	else
24:	$Time_{estimated} + = \max(C_{latency}, M_{latency})$
25:	$GB_{Leftover} - = (iact_{size} + k \times m)$
26:	end if
27:	end for
28:	end for
29:	return $Time_{estimated}$
30:	end procedure

DM-Scheduler: Scheduler

• Support dynamic re-allocation of the systolic array

- DRAIN the executing layers when an NN arrives or finishes
- Re-allocate the systolic array after the preemption completes

Simulation Configuration

- SCALE-Sim/DRAMsim3 + Accelergy/CACTI
 - SCALE-Sim, CACTI and Accelergy for PEs and on-chip SRAMs
 - DRAMsim3 for off-chip DRAM

Parameter	Low Performance	TPU-Like	High Performance	
Clock frequency	1 GHz			
Systolic Array	64x64	128x128	256x256	
Output accumulators	2048 entries / column			
On chip SPANA buffor	32 banks, 32 B/cycle			
	4 MB	8 MB	16 MB	
Off-chip DRAM	HBM2, 8 channels, 256GB/s			
Computation order	Filter-major			
Memory scheme	Working sets of filter and activations			

Spatial Multitasking Workloads

- Nine representative MLPerf DNNs with batch sizes 4
- 2-, and 4-way multitasking workloads

Name	PE Util.	DRAM	Category	Workload	Benchmarks	Scenario
		Bandwidth Util.		Mix 1	AlphaGoZero, NCF	CL
AlexNet	7.70%	26.94%	М	Mix 2	AlphaGoZero, SeqCNN	СМ
GoogleNet	35.78%	41.15%	Х	Mix 3 NCF, FasterRCNN		LX
ResNet-50	39.37%	48.41%	Х	Mix 4NCF, SeqLSTM		LM
AlphaGoZero	63.53%	21.57%	С	Mix 5 NCF, Transformer		LM
NCF	0.21%	8.19%	L	Mix 6 NCF, AlexNet		LM
FasterRCNN	44.71%	47.52%	М	Mix 7	Mix 7 FasterRCNN, ResNet-50	
SeqCNN	5.06%	47.21%	М	Mix 8	AlphaGoZero, ResNet-50, NCF, Transformer	CXLM
SeqLSTM	1.00%	32.30%	М	Mix 9 GoogleNet, ResNet-50, NCF, Transfo		XXLM
Transformer	0.79%	22.07%	M]		

: memory-intensive / C: compute-intensive / X: mixed / L: lightweight

(a) Characteristics of the evaluated MLPerf DNNs

(b) Evaluated spatial-multitasking workloads

Evaluation - STP, ANTT, and HW resource util.

- STP improves up to 31.9% over Planaria w/ PREMA
- Geometric mean improvement in ANTT achieves 13.0%
- PE & DRAM BW utilization improve up to **2.68x** and **75.9%**, respectively

Evaluation - Performance Modeling

- Use a mean absolute error (MAE) as the accuracy metric
 - $MAE = \frac{1}{n} \sum_{i=0}^{n-1} |latency_i predicted_i|$
- DM-Perf achieves high accuracy over PREMA
 - Single-DNN: **2.91%** vs 44.36%
 - Low-performance: **2.3%** vs 25.2%
 - TPU-like: **1.4%** vs 41.1%

Evaluation - HW Implementation Costs

Component	TPU	DM-NPU	Overhead
PE	0.1697 mm ²	0.2024 mm ²	+0.0327 mm ² (+19.27%)
SDS+WB	0.0543 mm ²	0.0606 mm ²	+0.0063 mm ² (+11.66%)
ACCQ	0.0320 mm ²	0.0357 mm ²	+0.0037 mm ² (+11.44%)
Others	0.3294 mm ²	0.3294 mm ²	-
Total	0.5854 mm ²	0.6280 mm ²	+0.0427 mm ² (+7.29%)
	(a) TPU	(b) DM-NPU	

Post-PnR layouts of low-performance TPU and DM-NPU implementations produced by OpenROAD Flow with the 7-nm ASAP7 PDK

Conclusion

- **Difficult** to fully utilize the systolic array
 - The existing coarse-grained systolic array allocation limits the potential of spatial multitasking on NPUs.

Dataflow mirroring & DM-NPU

- Reverse the dataflows of co-located NNs
- Achieve highly flexible and efficient spatial multitasking

• DM-Perf: Accurate Contention-aware perf. model

- Capture the shared NPU HW resource contentions using per-layer profiles
- Achieve high accurate latency calculation

• Up to **31.9%** performance improvement over SotA

• Optimal systolic-array allocation with fine-grained PE distribution

