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Abstract

This paper introduces a notion of partial secrecy in bilateral contracting games

between one upstream firm and several competing downstream firms. The supplier’s

offer quantities are subject to trembles, and each downstream firm observes a noisy

signal about the offer received by its competitor before deciding whether to accept

its offer. A downstream firm’s belief about its competitor’s quantity is determined

endogenously as a weighted average of the competitor’s expected equilibrium quantity

and the signal about the actual quantity that the competitor was offered. The degree

of contract secrecy is captured by the weight that this belief puts on the competitor’s

expected equilibrium quantity. We find that a higher degree of secrecy implies a more

competitive equilibrium outcome, both in a game with simultaneous offers and in a

dynamic game with alternating offers similar to the one in Do and Miklós-Thal (2022,

“Opportunism in Vertical Contracting: A Dynamic Perspective,” CEPR Discussion

Paper No. DP16951).
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1 Introduction

Models of bilateral contracting between an upstream monopolist and multiple competing

downstream firms are widely used in the industrial organization literature, and their anal-

yses have generated important insights about the effects of vertical restraints and vertical

mergers. A well-known result of this literature is that the equilibrium outcomes of games in

which the upstream supplier makes simultaneous contract offers to the downstream firms

depend on whether offers are public (i.e., observed by all downstream firms) or secret (i.e.,

observed only by the firm receiving an offer). When offers are public, the supplier exerts

its full market power in equilibrium. When offers are secret, however, the supplier faces

a temptation to behave opportunistically by offering contracts that raise the bilateral sur-

plus with one downstream firm at the expense of other downstream firms. Equilibrium

outcomes then depend on a downstream firm’s beliefs about other downstream firms’ of-

fers after obtaining an out-of-equilibrium offer; under the commonly used passive-beliefs

assumption, the supplier is unable to fully exert its market power. Vertical mergers and

vertical restraints like exclusive dealing can re-establish the supplier’s market power in that

case, to the detriment of consumers and social welfare.1

The extant literature treats contract secrecy as binary. Contract offers are either public

or secret. In the former case, all downstream firms observe all offers without any noise. In

the latter case, a downstream firm receives no information at all about the actual offers

received by its competitors. In practice, however, neither of these two extremes, public or

secret contract offers, is likely to be a good description of the informational environment

faced by firms. Public offers lack realism because negotiations of bilateral contracts typically

involve private communication between the contracting parties and suppliers, even if they

wanted to, cannot credibly commit to making all offers publicly observable. Secret offers,

on the other hand, ignore that information leakages across downstream firms can occur

even if contracts offers are made privately. Moreover, in dynamic settings, accepted supply

contracts are unlikely to remain fully secret as time passes, because downstream firms

can draw inferences about their competitors’ current supply terms from observed market

1On the importance of contract observability and beliefs following out-of-equilibrium offers, see O’Brien
and Shaffer (1992), McAfee and Schwartz (1994), Rey and Vergé (2004), and the survey article by Rey and
Tirole (2007). On the various ways of “solving” the supplier’s opportunism problem in vertical contracting,
see also Hart and Tirole (1990), Marx and Shaffer (2004), Montez (2015), and Gaudin (2019).
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behavior and market outcomes.

This paper takes a first step towards modeling partial secrecy in vertical contracting

games and analyzing its implications for equilibrium outcomes.2 Our analysis builds on

two new modeling elements. First, the supplier’s offer quantities are subject to mistakes or

trembles. Such mistakes could arise due to coordination failures or communication frictions

within the supplier’s organization, for instance, or due to human error. Second, each down-

stream firm obtains a noisy signal about its competitor’s quantity before deciding whether

to accept its offer. Given these two elements, a downstream firm’s posterior mean belief

about its competitor’s quantity, after observing the signal, becomes a weighted average of

the competitor’s expected equilibrium quantity and the signal about the actual quantity

that the competitor was offered. The degree of contract secrecy is captured by the weight

that this belief puts on the competitor’s expected equilibrium quantity, which depends on

the ratio of the variance of the signal over the variance of the trembles in the offer quan-

tities. As the signal about the actual quantity becomes more precise (the signal variance

falls), the degree of secrecy falls and the belief moves closer to the true quantity that the

competitor was offered. As the signal becomes less precise, the degree of secrecy rises and

the belief moves closer to the competing firm’s expected equilibrium quantity.

Since all quantities are offered with positive—albeit possibly very small—probability in

equilibrium, our analysis and results do not rely on any assumptions about beliefs following

out-of-equilibrium offer quantities.3 Passive beliefs, which are widely used in the literature

but have been lacking a theoretical foundation, arise endogenously as the limiting case in

which the ratio of the variance of the trembles over the variance of the signals goes to zero.

We analyze the implications of partial secrecy in two vertical contracting games: first, a

game with simultaneous offers, extending the standard modeling approach in the literature;

2The only notion of partial secrecy in the literature that we are aware of is that of interim (or ex post)
observability, whereby a downstream firm observes its competitors’ contracts after accepting its contract
but before competing downstream (McAfee and Schwartz, 1994; Rey and Vergé, 2004). Our analysis deals
with partial secrecy before contract acceptance decisions are made, introducing a continuous measure of
contract secrecy. Since contracts fix the downstream firms’ strategic decisions (quantities) in our model,
the question of interim observability does not arise.

3Other attemps to endogenize beliefs in vertical contracting games with secret offers can be found in
White (2007), who considers a game in which the supplier has private information about its marginal cost,
and In and Wright (2018), who propose the refinement that beliefs should be invariant to the order in
which offers are made. In contrast, the beliefs following any observed offer quantity and signal are obtained
through Bayesian updating in our game.
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and second, a dynamic game with alternating offers, following our modeling approach in

Do and Miklós-Thal (2022). In the dynamic game, the supplier alternates between mak-

ing offers to two competing downstream firms over an infinite horizon, and the analysis

focuses on Markov perfect equilibria. While Do and Miklós-Thal (2022) assume that each

downstream firm is aware of its competitor’s current contracted quantity when deciding

whether to accept an offer, either because contract offers are public or because the firm can

perfectly infer its competitor’s current quantity from observed market outcomes in the time

that elapses between offers, in the present paper we assume instead that contract offers are

secret and that each downstream firm’s inferences about its competitor’s current quantity

are imperfect.

In both the simultaneous-offers game and the alternating-offers games, we find that

a greater degree of secrecy leads to a more competitive outcome with a higher expected

total quantity sold in equilibrium. In other words, a greater degree of secrecy implies a

greater degree of equilibrium opportunism. Intuitively, this is because a change in the

quantity offered to one downstream firm has a lesser effect on the competing downstream

firm’s posterior belief when the degree of secrecy is higher, which implies that the supplier’s

equilibrium offers internalize less of the competitive externalities across downstream firms.

The equilibrium degree of opportunism varies continuously with the degree of secrecy

in the two games analyzed in this paper. In the simultaneous-offers game, the expected

equilibrium outcomes span the entire range between the integrated monopoly outcome,

corresponding to the equilibrium under simultaneous public offers, and the competitive

(pairwise-proof) outcome, corresponding to the equilibrium under secret offers and passive

beliefs. In the alternating-offers game, the expected steady-state equilibrium outcome is

more competitive than the integrated monopoly outcome even in the limit case correspond-

ing to public offers, and it approaches the competitive (pairwise-proof) outcome for any

discount factor as the degree of contract secrecy rises. Moreover, the combination of secrecy

and dynamic recontracting implies stronger opportunism than secrecy alone. For any given

degree of secrecy, the equilibrium outcome is more competitive at the steady state of the

dynamic model with recontracting than in the static model with simultaneous offers. The

findings thus complement the results in Do and Miklós-Thal (2022), where we analyze how

the equilibrium degree of opportunism varies with the firms’ discount factor and the speeds
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at which the supplier’s contract with one retailer reacts to changes in the other retailer’s

contract.

Understanding the equilibrium degree of opportunism is useful for vertical merger policy

and for public policy on vertical restraints. This is because when opportunism is greater,

then the competitive damage arising from strategies like vertical mergers or vertical re-

straints that lead to the monopoly outcome will be worse, and the supplier’s incentives to

use such strategies will be stronger. Our findings suggest that a greater degree of secrecy

raises both the supplier’s incentive to employ strategies aimed at dampening competition

and the harm to competition from allowing the supplier to do so. This is true both with

and without the possibility of future recontracting.

The rest of this paper will be organized as follows. Section 2 introduces partial secrecy

into an otherwise standard model of simultaneous contract offers. Section 3 analyzes the

implications of partial secrecy in an infinite-horizone dynamic model with alternating offers.

Section 4 concludes. All formal proofs are relegated to Appendix A.

2 Simultaneous offers

Industry setting We consider vertical contracting between one upstream supplier, U ,

and two competing downstream firms Di (i = A,B, also called retailers). The downstream

firms purchase an input from the supplier, transform it into a final good using a one-to-one

technology, and sell the final good to consumers. Upstream marginal costs are constant

and equal to c ∈ [0, 1), downstream marginal costs are constant and normalized to zero.

Consumers have a linear inverse demand function P (qA + qB) = 1 − (qA + qB) for the

product, where qi denotes the quantity put on the market by downstream firm Di.
4 The

variable profit of downstream firm Di (gross of any payments to the supplier) is given by

π (qi, q−i) = qiP (qA + qB) .

We use subscripts to denote derivatives, e.g., π1 (qi, q−i) = ∂π(qi,q−i)
∂qi

and π2 (qi, q−i) =

4As in Do and Miklós-Thal (2022), using P (q) = 1−q rather than P (q) = a−bq is a simple normalization
and without loss of generality. If P (q) = a− bq, the term 1− c in our results would simply be replaced by
a−c
b .
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∂π(qi,q−i)
∂q−i

. The sum of all three firms’ profits is given by the industry profit

Π (qA + qB) = (qA + qB) (P (qA + qB)− c) .

The quantity that maximizes industry profits is denoted by QM = arg maxQ Π (Q), and

qM = QM

2
denotes the quantity per retailer when they split the total monopoly quantity

QM equally. Moreover,

qC = arg max
q

(
q
(
P
(
q + qC

)
− c
))

= arg max
q

(
Π
(
q + qC

)
− π

(
qC , q

))
denotes the per-firm Cournot quantity given the marginal production cost c. Given the

linear demand specification, qM = 1−c
4

and qC = 1−c
3

.

A supply contract consists of a quantity and a fixed fee. If Di accepts a contract (qi, fi),

then it pays the fixed fee fi to U , transforms all qi input units into its final output, and

puts qi units on the market.5

Benchmark: Public offers The first benchmark game is the one in which U makes

simultaneous public offers to the retailers, then the retailers simultaneously and indepen-

dently decide whether to accept their offers. In this game, the supplier fully exerts its

monopoly power and obtains the entire monopoly profit in (a subgame perfect) equilib-

rium. For instance, U can achieve this by offering the contract
(
qM , π

(
qM , qM

))
to each

retailer. Both retailers will accept, because the fixed fee does not exceed an individual

retailer’s variable profit given that both retailers were offered qM , and together they will

sell the monopoly quantity QM . The intuition for why the monopoly outcome arises in

equilibrium is that the supplier internalizes the effects on all retailers’ profits when making

offers: Any change in the quantity offered to Di affects the fixed fee that the supplier can

obtain from retailer D−i by an amount equal to the effect of the change on D−i’s variable

profit.

Benchmark: Secret offers and passive beliefs The second benchmark game is the

one in which U makes simultaneous secret offers to the retailers, then the retailers simulta-

neously and independently decide whether to accept their offers. When Di cannot observe

5For simplicity, supply contracts are assumed to be quantity-fixing, that is, they fix how much quantity
the downstream firm transforms into the final output and puts on the market. See Do and Miklós-Thal
(2022, fn. 8) for a discussion of this assumption.
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the contract offered to D−i, the (perfect Bayesian) equilibrium of the game is sensitive to

Di’s beliefs about the contract offered to D−i when Di receives an out-of-equilibrium offer.

A reasonable and widely-used assumption in Cournot settings like the one we consider is

that retailers hold passive beliefs, whereby a retailer that receives an out-of-equilibrium

offer continues to believe that its rival was offered the equilibrium contract.6

Let (q∗A, q
∗
B) denote the equilibrium quantities. With passive beliefs, retailer Di is willing

to accept an offer (q, f) if and only if f ≤ π
(
q, q∗−i

)
. The equilibrium offer to Di must

therefore maximize the bilateral surplus of the pair U −Di given q∗−i, which in our setting

means that Di’s equilibrium quantity must be the Cournot best response to q∗−i:

q∗i = arg max
q

(
π
(
q, q∗−i

)
− cq

)
= arg max

q

(
Π
(
q + q∗−i

)
− π

(
q∗−i, q

))
.

In the unique equilibrium given passive beliefs, the retailers thus sell the Cournot quantities(
qC , qC

)
and the supplier earns Π

(
2qC
)
< Π

(
2qM

)
. Intuitively, the supplier is unable to

fully exert its market power because when making an offer to Di, it does not internalize

the negative effect that a higher qi has on D−i’s variable profit.7

Simultaneous-offers game with partial secrecy The simultaneous-offers game with

partial secrecy proceeds as follows:

1. U chooses target quantities {q̂A, q̂B}, which are unobserved by the downstream firms.

2. An offer quantity qi is drawn from the distribution N
(
q̂i, σ

2
q

)
for each i = A,B and

observed privately by U and Di.

3. For each i = A,B, a signal si = qi + εi is realized and observed by all firms, where εi

is distributed according to N (0, σ2
s).

8

6The passive beliefs refinement is appealing in Cournot-like settings because U has no incentive to
change the offer to D−i when it changes the offer to Di. See Hart and Tirole (1990), Rey and Vergé (2004),
or Rey and Tirole (2007) for more detailed discussions.

7Some papers in the vertical contracting literature (e.g., O’Brien and Shaffer (1992)) use the “contract
equilibrium” concept pioneered by Cremer and Riordan (1987), which requires contracts to be pairwise
stable (i.e., each contract must maximize bilateral surplus given the contracts of other retailers) but does
not rule out multi-lateral deviations. In the model with Cournot competition and quantity-fixing contracts
considered here, the quantities in a passive-beliefs perfect Bayesian equilibrium coincide with the quantities
in such a contract equilibrium.

8The results remain unchanged if the signal si about Di’s offer quantity qi is privately observed by U
and D−i.

6



4. U offers fixed fees {fA, fB} to DA and DB. Each downstream firm Di observes its

own fixed fee offer, but not the offer made to the rival downstream firm.

5. The downstream firms simultaneously decide whether to accept (gi = 1) or reject

(gi = 0) their offers (qi, fi). Downstream firms with accepted contracts sell to final

consumers and payoffs are realized.

This game makes two main departures from the benchmark simultaneous-offers games

described earlier. First, while U ’s target quantity choices in stage 1 determine the ex-

pected quantities in the contracts offered to the two retailers, the actual quantities offered

are subject to stochastic mistakes. These mistakes can be thought of as resulting from

communication or coordination frictions within the supplier’s organization, or as human

errors. Second, each retailer receives a signal about its competitor’s quantity before decid-

ing whether to accept its contract. In the static model, these signals can be thought of as

information leakages between firms.

The assumption that fixed fees are offered after the quantity signals are observed (and

that the fixed fees are not subject to mistakes) ensures that the supplier can extract each

retailer’s full expected variable profit in equilibrium.9 Since the benchmark cases of simul-

taneous public or secret offers feature full surplus extraction in equilibrium, having a model

in which the supplier can extract the full downstream variable profits in expectation allows

us to isolate the effect of the degree of secrecy on equilibrium outcomes in the absence of

additional departures from the standard models.

Equilibrium concept The solution concept is perfect Bayesian equilibrium. To be more

precise, let us denote a history at the beginning of stage τ by hτ and a private history

of Di by hτi . For instance, h4 = (q̂A, q̂B, qA, qB, sA, sB) , and h5i = (qi, sA, sB, fi) . Then, a

strategy of U consists of target quantities q̂i ∈ R and fixed fees Fi : h4 7→ fi ∈ R; and

a strategy of Di is an acceptance decision, Gi : h5i 7→ gi ∈ {1, 0}. Denoting by βi (h
τ
i )

the belief of Di over histories at hτi , a perfect Bayesian equilibrium consists of a strategy

9An alternative formulation that would also lead to full surplus extraction would be that in stage 1,
U sets fixed fees (fA (qA, sB) , fB (qB , sA)) that condition on the signal realizations and the realized offer
quantities; in stages 2 and 3, the offer quantities and signals are realized; and in stage 4, the downstream
firms simultaneously decide whether to accept or reject U ’s offers.
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profile, ((q̂i, Fi) , Gi)i=A,B, and a belief system, (βi)i=A,B, that satisfy sequential rationality

and consistency.

In a perfect Bayesian equilibrium, the supplier will not condition its fixed-fee offer to Di

on (q̂A, q̂B, q−i, si, f−i), because there are no upstream externalities and the target quantities

are payoff-irrelevant. Thus, there exists a unique on-path fixed fee offered to Di following

(qi, s−i), which is the highest fixed fee, denoted by Fi (qi, s−i), that Di is willing to accept

given its beliefs after observing (qi, s−i). Perfect Bayesian equilibrium does not impose any

restrictions on Di’s beliefs following an offer f ′i 6= Fi (qi, s−i). We are going to assume that

observing an offer f ′i 6= Fi (qi, s−i) does not alter Di’s beliefs. This refinement is reasonable,

because whether a deviation that involves offering a different fixed fee to Di is profitable

or unprofitable for U is independent of (q−i, f−i).

Equilibrium analysis: Beliefs Denoting the equilibrium target quantities by (q̂∗A, q̂
∗
B),

the retailers’ prior beliefs are that the actual quantities offered by the supplier follow

N
(
q̂∗A, σ

2
q

)
and N

(
q̂∗B, σ

2
q

)
. Once Di observes its offer qi at stage 2, its belief about its

own offer becomes qi, while the belief about the other retailer’s offer remains unchanged

(since any quantity is offered with positive probability on the equilibrium path).

At stage 3, after observing the signal s−i, Di revises its belief about the quantity q−i

that was offered to D−i from the prior to the following posterior:

q−i ∼ N

(
σ2
s

σ2
s + σ2

q

q̂∗−i +
σ2
q

σ2
s + σ2

q

s−i,
σ2
qσ

2
s

σ2
s + σ2

q

)
.

We will denote the weight that the posterior mean puts on the prior mean by

α ≡ 1

1 +
σ2
q

σ2
s

,

and the posterior mean by

µ−i ≡ E (q−i |s−i ) = αq̂∗−i + (1− α) s−i.

As α rises, that is, as the variance of the mistake falls relative to the variance of the

signal, each downstream firm’s posterior mean belief puts more weight on the prior and

responds less to the signal about the actual quantity that its competitor was offered. The

limit case of α → 0 (
σ2
q

σ2
s
→ ∞) corresponds to the benchmark case of public offers, in
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which each downstream firm observes its competitor’s quantity. The limit case of α → 1

(
σ2
q

σ2
s
→ 0) corresponds to the benchmark case of secret offers and passive beliefs, in which

each downstream firm obtains no information about its competitor’s quantity. In what

follows, we will refer to α as the degree of contract secrecy.

Equilibrium analysis: Quantities To solve for the equilibrium target quantities (which

are also the expected quantities in equilibrium), we first consider Di’s contract acceptance

decision at stage 5 of the game. Di is willing to accept (qi, fi) if and only if the fixed fee

does not exceed Di’s expected profit:

fi ≤ E (π (qi, q−i) |s−i) = qi
(
1− qi − µ−i

)
= qi

(
1− qi − αq̂∗−i − (1− α) s−i

)
,

where the expectation is taken over q−i conditional on s−i and the strategies. In equilibrium,

therefore, U sets Fi (qi, s−i) = qi (1− qi − αq̂−i − (1− α) s−i) for each Di and both retailers

accept their offers.10

Moving backward, consider U ’s optimal choice of the target quantities in stage 1. The

equilibrium target quantities (q̂∗A, q̂
∗
B) must solve the following problem:

max
q̂A,q̂B

∑
i=A,B

E
(
qi
(
1− qi − αq̂∗−i − (1− α)s−i

)
− cqi|q̂A, q̂B

)
,

where the expectation is taken over qi and s−i for i = A,B. The choice of q̂i affects the

supplier’s expected payoff both through its direct effect on the distribution of Di’s actual

quantity (qi) and through its indirect effect on the distribution of D−i’s beliefs about Di’s

10Given the normality assumptions, qi and the expected margin E (P (qi + q−i) |s−i )− c with the expec-
tation being taken over q−i can take on negative values. If this is the case, U would prefer to induce retailer
Di to reject U ’s offer (by setting a high fixed fee at stage 4). For convenience, we ignore this possibility,
both in the simultaneous-offers game and in the later alternating-offer game. As noted by Vives (1984,
fn. 2) in the context of an oligopoly model in which the intercept of a linear demand function is normally
distributed and the firms obtain normally distributed signals about its value, “The probability of this event
[negative prices and quantities] can be made arbitrarily small by appropriately choosing the variances of
the model.” In our setting, by setting the variances of both the mistakes in the quantity offers and the
signal sufficiently small, the probability of a negative quantity or a negative expected margin can be made
arbitrarily small. The degree of contract secrecy only depends on the ratio of the two variances, which can
take on any value in (0, 1) while both variances are close to zero.

An alternative way to avoid this issue is to replace the normal specification by other distributions that
preserve the linearity of the conditional expectations. In Appendix B, we illustrate this by using the beta-
binomial conjugate: the actual quantity with a mistake is drawn from a beta distribution, and the signal
is drawn from a binomial distribution. In this setup, (i) qi and the expected margin remain nonnegative;
(ii) the conditional expectation of the rival’s quantity is a weighted average of the realized signal and the
target quantity; and (iii) the weight is characterized by the relative volatilities of mistakes and signals.
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quantity (through the distribution of the signal si). The degree of secrecy regulates the

strength of the latter effect.

This supplier’s problem is equivalent to

max
q̂A,q̂B

∑
i=A,B

(
π
(
q̂i, αq̂

∗
−i + (1− α)q̂−i

)
− cq̂i − σ2

q

)
,

because

E
(
qi
(
1− qi − αq̂∗−i − (1− α)s−i

)
− cqi|q̂A, q̂B

)
=q̂i − E

(
q2i |q̂i

)
− αq̂∗−iq̂i − (1− α)E (qis−i|q̂A, q̂B)− cq̂i

=q̂i −
(
σ2
q + q̂2i

)
− αq̂∗−iq̂i − (1− α)q̂iq̂−i − cq̂i

=q̂i
(
1− q̂i − αq̂∗−i − (1− α)q̂−i

)
− cq̂i − σ2

q

=π
(
q̂i, αq̂

∗
−i + (1− α)q̂−i

)
− cq̂i − σ2

q,

where the second equality follows from

E
(
q2i |q̂i

)
= V ar (qi|q̂i) + E (qi|q̂i)2 = σ2

q + q̂2i ,

and

E (qis−i|q̂A, q̂B) = E (qi|q̂i)E (s−i|q̂−i) = q̂iq̂−i.

The first-order conditions become, for each i = A,B,

π1

(
q̂∗i , q̂

∗
−i
)
− c+ (1− α) π2

(
q̂∗−i, q̂

∗
i

)
= 0.

The first-order conditions show that when setting Di’s target quantity, the supplier inter-

nalizes a fraction (1−α) of the effect of a change in Di’s quantity on D−i’s profit (evaluated

at the expected equilibrium quantities). The degree of secrecy thus determines the extent

to which the competitive externalities across retailers are internalized in equilibrium. As

the degree of secrecy rises, a smaller share of the competitive externalities is internalized.

Solving the first-order conditions for the target quantities yields our main result in the

simultaneous-offers game:11

11The second-order condition are satisfied, because for any given (q̂∗A, q̂
∗
B), the Hessian of the objective

function, [
π11 + (1− α)

2
π22 (1− α) (π12 + π21)

(1− α) (π12 + π21) π11 + (1− α)
2
π22

]
=

[
−2 −2 (1− α)

−2 (1− α) −2

]
,

is negative definite.
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Proposition 1 The equilibrium target quantities in the simultaneous-offers game are given

by

q̂∗A = q̂∗B = q̂∗ ≡ 1− c
4− α

∈
(
qM , qC

)
.

The equilibrium target quantities vary continuously in the degree of secrecy α, span-

ning the entire range between the monopoly quantities (for α → 0, corresponding to the

benchmark of public offers) and the Cournot quantities (for α → 1, corresponding to the

benchmark of secret offers and passive beliefs). As the degree of contract secrecy rises, the

equilibrium target quantities increase and thus the expected price paid by consumers falls.

The analysis extends straightforwardly to the more general case with n ≥ 2 downstream

firms under the assumption that all firms observe the same signal realizations.12 In this

case, each downstream firm Di (i = 1, 2, ..., n), after observing the common signal sj about

the quantity qj offered to Dj, j 6= i, revises its belief from the prior N
(
q̂∗j , σ

2
q

)
to the

posterior:

qj ∼ N

(
σ2
s

σ2
s + σ2

q

q̂∗j +
σ2
q

σ2
s + σ2

q

sj,
σ2
qσ

2
s

σ2
s + σ2

q

)
.

Hence, the expression for the posterior mean, µj = E (qj|sj) = αq̂∗j + (1−α)sj, remains the

same as in the case of n = 2.

The first-order conditions for the target quantities become, for each i ∈ {1, 2, ..., n},

∂πi (q̂
∗)

∂qi
− c+ (1− α)

∑
j 6=i

∂πj (q̂∗)

∂qi
= 0,

where πi (q) = qiP
(∑

j qj

)
is Di’s profit given the quantity vector q = (q1, q1, ..., qn) and

q̂∗ = (q̂∗1, q̂
∗
2, ..., q̂

∗
n) is the vector of equilibrium target quantities. The equilibrium target

quantities become

q̂∗i =
1− c

2n− (n− 1)α
for all i = 1, 2, ..., n.

Again, we observe that the equilibrium quantity converges to the Cournot quantity, 1−c
n+1

,

as α → 1 (corresponding to secret offers) and to the monopoly quantity, 1−c
2n

, as α → 0

(corresponding to public offers).

12The analysis of cases in which the downstream firms observe different signals (e.g., privately observed
independent draws) is left for future research.
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3 Alternating offers

Framework Our second game, building on Do and Miklós-Thal (2022), considers an

infinite-horizon dynamic model with alternating offers.13 Time is discrete (t = 1, 2, ...),

and U makes contract offers to DA (resp. DB) in odd periods (resp. even periods). An

accepted contract lasts for two periods, and the firms share a common discount factor

δ ∈ [0, 1) between periods. A contract (qi, fi) now specifies the quantity qi to be put on the

market by Di in each of the two periods that the contract covers and a one-time upfront

fixed fee fi paid at the time of contract acceptance. As in the simultaneous-offers game,

the supplier’s quantity offers are subject to mistakes. Moreover, prior to receiving an offer,

a retailer obtains a signal of its competitor’s current quantity.

Formally, the timing within each period t is as follows (i = A in odd periods, i = B in

even periods):

1. U chooses a target quantity q̂ti , which is unobserved by the downstream firms.

2. An offer quantity qti is drawn from N
(
q̂ti , σ

2
q

)
and observed privately by U and Di.

3. U offers a fixed fee f ti to Di, observed privately by Di.

4. Di decides whether to accept (gti = 1) or reject U ’s offer (gti = 0). Di’s decision is

unobserved by D−i. Downstream firms with accepted contracts sell to final consumers.

5. A signal sti = qti · gti + εti is realized and observed publicly by all firms, where εti is

distributed according to N (0, σ2
s).

In the dynamic setting, it is natural to think of each retailer as learning about its com-

petitor’s current quantity from observed market outcomes (e.g., the price, which could be

modeled as a stochastic function of the total quantity). To simplify the analysis, we model

the information that each retailer obtains as a public signal of the competitor’s quantity

13The dynamic model in Do and Miklós-Thal (2022) and the present paper are inspired by a series of
seminal papers on dynamic oligopoly games with asynchronous moves (Maskin and Tirole, 1987, 1988a,b).
The key distinguishing feature of our analyses is that we consider a vertical industry with a strategic input
supplier.
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only, as in the simultaneous-offers game, and assume that retailers draw no additional in-

ferences about their competitor’s quantities from prices/own payoffs.14 This ensures that a

retailer’s belief about its competitor’s current quantity (when the firms play Markov perfect

public strategies) depends on the sequence of publicly observed signals only, and not on the

retailer’s own quantity.

Equilibrium concept We focus on perfect Bayesian equilibria in symmetric (stationary)

Markov perfect public strategies, which depend on the history of the game only through a

payoff-relevant state variable. More precisely, the state variable in a period when U makes

an offer to Di will be Di’s expectation (mean belief) of D−i’s current quantity, which will

be denoted by µ−i. A Markov perfect public strategy of U is then given by a pair of

mappings (R (·) , F (·)), where R
(
µ−i
)
∈ R is the target quantity chosen in state µ−i and

F
(
qi;µ−i

)
∈ R is the fixed fee offer in state µ−i after an actual quantity qi is realized.

We will refer to R (·) as the dynamic target-quantity reaction function. A Markov perfect

public strategy of Di is given by a function G
(
qi, fi;µ−i

)
∈ {1, 0}, where G

(
qi, fi;µ−i

)
= 1

(resp. G
(
qi, fi;µ−i

)
= 0) means that Di accepts (resp. rejects) the offer (qi, fi) in state

µ−i. Note that the state variable is common knowledge because the downstream firms’

beliefs are functions of the sequence of publicly observed signals, as described in more

detail later. Also, we continue to assume that no off-path deviation alters Di’s beliefs (that

is, an out-of-equilibrium fixed fee offer does not affect a downstream firm’s beliefs).

Henceforth, a perfect Bayesian equilibrium in symmetric (stationary) Markov perfect

public strategies is referred to simply as equilibrium, and we will say that an equilibrium is

linear if the dynamic target-quantity reaction function is linear. All firms are risk neutral

and seek to maximize expected presented discounted payoffs.

Equilibrium analysis: Beliefs To understand how the state variable evolves over time,

suppose that in period t− 1, U made an offer to D−i and the state variable was µi. Then,

Di believes that U set a target quantity for D−i of R (µi) in period t − 1. Therefore, Di’s

14The assumption that retailers draw no additional inferences from prices/own payoffs, while restrictive,
may be appropriate in settings in which public signals are sufficient statistics for privately observed ex-post
payoffs (this would be the case, for instance, if pti = 1− qti − st−i, so that for retailer Di, s

t
−i is a sufficient

statistic for
(
pti, s

t
−i
)
), or if the ex-post payoffs are realized with a time lag (see Mailath and Samuelson

2006, p. 226). It is reminiscent of the common assumption in repeated games with imperfect monitoring
that firms receive no information about other firms’ actions beyond a public signal.
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posterior belief about qt−1−i , after observing s−i at the end of period t− 1, is given by

N

(
σ2
s

σ2
s + σ2

q

R (µi) +
σ2
q

σ2
s + σ2

q

s−i,
σ2
qσ

2
s

σ2
s + σ2

q

)
.

As in the game with simultaneous offers, α =
(

1 +
σ2
q

σ2
s

)−1
measures the degree of secrecy,

where α = 0 (resp. α = 1) corresponds to public offers (resp. secret offers and passive

beliefs). The state variable thus evolves from µi to

µ−i = αR (µi) + (1− α) s−i.

As in the simultaneous-offers game, the degree of secrecy α determines how much weight a

retailer’s posterior belief about its competitor’s quantity puts on the prior belief versus the

signal about the competitor’s actual quantity.

Equilibrium analysis: Strategies To solve for an equilibrium, we define the following

value functions. Given the Markov strategies ((R,F ) , G), let W
(
µ−i
)

(resp. W
(
qi;µ−i

)
)

denote the expected present discounted value of U ’s profits when U chooses a target quantity

(resp. a fixed fee after qi is realized) in state µ−i and all firms play according to their

Markov strategies strategies henceforth. Similarly, let V
(
qi, fi;µ−i

)
denote the expected

present discounted value of Di when Di accepts the contract offer (qi, fi) it received at state

µ−i and all firms play according to their Markov strategies henceforth.

The supplier U ’s optimization problems are then given by

W
(
qi;µ−i

)
= max

fi
E
(
fi − c (1 + δ) qi + δW

(
αR
(
µ−i
)

+ (1− α) si
) ∣∣qi).

s.t. V
(
qi, fi;µ−i

)
≥ V

(
0, 0;µ−i

)
,

and

W
(
µ−i
)

= max
q̂i

E
(
W
(
qi, µ−i

) ∣∣q̂i),
where the constraint V

(
qi, fi;µ−i

)
≥ V

(
0, 0;µ−i

)
guarantees acceptance by the down-

stream firms, and the expectations in W
(
qi;µ−i

)
and W

(
µ−i
)

are respectively taken over

si and qi.

We first show that Di’s acceptance decision reduces to to an upper bound on the fixed

fee.
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Lemma 1 It is optimal for Di to accept offer (qi, fi) in state µ−i, i.e., V
(
qi, fi;µ−i

)
≥

V
(
0, 0;µ−i

)
, if and only if

fi ≤ F̄
(
qi;µ−i

)
≡ π

(
qi, µ−i

)
+ δE

(
π
(
qi, R

(
αR
(
µ−i
)

+ (1− α) si
))
|qi
)
,

where the expectation is taken over si.

The fixed payment F̄
(
qi;µ−i

)
extracts the present discounted value of all variable profits

that Di expects to earn during the contract duration. The first term captures Di’s expected

profit from selling qi in the current period when it believes that its competitor sells a

quantity of µ−i in expectation. The second term captures Di’s expected profit from selling

qi in the next period. This term takes into account that D−i will form its belief about

Di’s quantity based on the realization of si and the supplier’s equilibrium target quantity

R
(
µ−i
)
, resulting in the next period state, αR

(
µ−i
)

+ (1− α) si. Therefore, the supplier

will set the target quantity to D−i in the next period at R
(
αR
(
µ−i
)

+ (1− α) si
)
, which

determines Di’s expected profit in the next period.

Since the supplier’s payoff strictly increases in fi, F
(
qi;µ−i

)
= F̄

(
qi;µ−i

)
in equilibrium.

Substituting this binding constraint into the objective function, the supplier chooses the

target quantity to solve the following problem:

W
(
µ−i
)

= max
q̂i

E
(
π
(
qi, µ−i

)
+ δπ

(
qi, R

(
αR
(
µ−i
)

+ (1− α) si
))
− c (1 + δ) qi

+ δW
(
αR
(
µ−i
)

+ (1− α) si
) ∣∣q̂i), (1)

with the expectation being taken over qi and si. The strategies ((R,F ) , G) form an equi-

librium if and only if there exist value functions W (·) such that, for every µ−i ∈ R, (1)

holds,

R
(
µ−i
)
∈ arg max

q̂i
E
(
π
(
qi, µ−i

)
+ δπ

(
qi, R

(
αR
(
µ−i
)

+ (1− α) si
))
− c (1 + δ) qi

+ δW
(
αR
(
µ−i
)

+ (1− α) si
) ∣∣q̂i),

F
(
qi;µ−i

)
= F̄

(
qi;µ−i

)
, and G

(
qi, fi;µ−i

)
= 1 if and only if fi ≤ F̄

(
qi;µ−i

)
.

We find that, as in the dynamic game with public offers in Do and Miklós-Thal (2022),

the game has a unique linear equilibrium.

Proposition 2 The alternating-offers game has a unique linear equilibrium. In this equi-

librium, R
(
µ−i
)

= a∗ − b∗µ−i, with a∗ ≥ 0 and 0 < b∗ ≤ 1
2
.
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Figure 1: The top three lines show the expected steady-state quantity µ0 as a function of

the degree of contract secrecy α for three different discount factors (black: δ = 0.01, dark

gray: δ = 0.5, light gray: δ = 0.99). The dashed line shows that equilibrium target quantity

q̂∗ in the simultaneous-offers game.

Equilibrium steady state The equilibrium target-quantity reaction function R (·) in-

duces a long-run steady-state expected quantity/belief that satisfies µ0 = R (µ0):

µ0 ≡ lim
t→∞

E
(
qti
)

=
a∗

1 + b∗
for each i = A,B.

Our next proposition shows that the steady-state expected quantity rises in the degree of

secrecy.

Proposition 3 The expected quantity µ0 in the long-run steady state satisfies the following

properties:

(1) µ0 is strictly increasing in the degree of secrecy α, with limα→1 µ
0 = qC for all δ,

(2) µ0 is strictly decreasing in the discount factor δ, with limδ→0 µ
0 = qC for all α.

Figure 1 illustrates how the equilibrium steady-state expected quantity varies with the

degree of secrecy for three different discount factors. For each discount factor, the steady-

state expected quantity is increasing in the degree of secrecy. For α → 0, the model
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coincides with the symmetric retailer case in Do and Miklós-Thal (2022).15 As the degree

of secrecy α rises, the rival retailer’s belief in the next period depends less on the offer made

in the current period, because the signal becomes less informative and a change in today’s

offer will have less impact on the distribution of states in the next period. Intuitively,

when deciding on its target offer quantity for Di, U therefore becomes more focused on

maximizing the bilateral surplus with Di given Di’s current belief and less concerned with

favorably influencing D−i’s belief in the next period by setting a lower target quantity. In

the limit, for α → 1, the rival retailer’s belief becomes independent of the current-period

offer, and the first-order condition at the steady state becomes

0 = (1 + δ)
(
π1

(
µ0, µ0

)
− c
)
,

which holds when µ0 is equal to the Cournot quantity qC .

Figure 1 also illustrates the finding that, for a given degree of contract secrecy, the

equilibrium steady-state expected quantity is lower the higher the discount factor. This is

consistent with our earlier finding in Do and Miklós-Thal (2022), in a dynamic model of

asynchronous recontracting with public offers, that patience reduces the degree of oppor-

tunism. Intuitively, when deciding on its target offer quantity for Di, U is more concerned

with maximizing the bilateral surplus with Di given Di’s current belief and less concerned

with inducing high industry profits in future periods (that the supplier can fully extract

through future fixed fees) when the discount factor is lower.

Do and Miklós-Thal’s (2022) finding that asynchronous dynamic recontracting causes

opportunism also extends from public to partially secret offers. Comparing the equi-

librium steady-state of the dynamic alternating-offers to the equilibrium outcome of the

simultaneous-offers game, we obtain the following results:

Proposition 4 For any α ∈ (0, 1) and δ ∈ (0, 1),

µ0 > q̂∗.

Moreover, lim(α,δ)→(0,1) µ
0 = 3(1−c)

10
> limα→0 q̂

∗ = qM .

15In Do and Miklós-Thal (2022), we analyze a continuous-time game in which recontracting events arise
stochastically and the arrival rates of the recontracting events can differ across retailers. The limit case
corresponding to public offers (α→ 0) in this paper is equivalent to the model with symmetric arrival rates
in Do and Miklós-Thal (2022).
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The equilibrium outcome of the static game, illustrated by the dashed line in Figure

1, is less competitive than the equilibrium steady-state of the dynamic alternating-offers

game for any any given degree of partial secrecy and any discount factor. Moreover, in the

alternating-offers game, unlike in the simultaneous-offers game, the steady-state quantity is

bounded below by a quantity strictly greater than the monopoly quantity even as secrecy

vanishes.

4 Conclusion

In this paper, we have taken a first step towards modeling partially secret supply contracts.

We have introduced a continuous measure of the degree to which a downstream firm’s sup-

ply terms can be observed by competing downstream firms. Using this measure, we have

analyzed how the degree of secrecy affects equilibrium outcomes in two vertical contracting

games. First, a game in which the supplier makes simultaneous offers to the downstream

firms, as commonly considered in the literature. Second, an infinite-horizon dynamic game

in which the supplier makes alternating offers to two downstream firms, building on our

recent work in Do and Miklós-Thal (2022). Our analysis does not rely on any assump-

tions about beliefs following out-of-equilibrium offer quantities, and passive beliefs arise

endogenously as a limiting case.

We find that, in both games, a greater degree of contract secrecy is associated with a

more competitive equilibrium outcome in a continuous fashion. The results thus suggest

that as downstream firms get better at predicting their competitors’ contract terms—be it

through ties between downstream firms due to a partnership (e.g., a joint venture), per-

sonal connections, competitive intelligence, or by drawing inferences from observed market

outcomes—suppliers will be able to exert their market power more fully and induce higher

final prices. Horizontal information leakages in the downstream market lead to less compe-

tition because of how they affect equilibrium supply contracts.

There are several limitations to this research. First, we have focused on quantity com-

petition in the downstream market and quantity-fixing supply contracts. Future research

could explore partial contract secrecy in settings with price competition where downstream

firms obtain signals about their competitors’ wholesale prices. Second, we have focused on
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settings with symmetric downstream firms. Future research could potentially analyze the

role of asymmetries among downstream firms, for instance, in the precision of the signals

that competitors obtain about their contracts.
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Appendix A: Proofs

Proof of Lemma 1. Let V
(
µ−i
)

be the equilibrium value of the downstream firm who

contracts with U , and Ṽ
(
µ−i
)

the equilibrium value of another downstream firm. If Di

accepts (qi, fi), it obtains

V
(
qi, fi;µ−i

)
= π

(
qi, µ−i

)
− fi + δE

(
π
(
qi, R

(
αR
(
µ−i
)

+ (1− α) si
))
|qi
)

+δE
(
Ṽ
(
αR
(
µ−i
)

+ (1− α) si
)
|qi
)
, (2)

where the expectations are taken over si. Instead, if Di rejects, it obtains

V
(
0, 0;µ−i

)
= δE

(
Ṽ
(
αR
(
µ−i
)

+ (1− α) si
)
|0
)
.

Thus, it is optimal for Di to accept (qi, fi) if and only if

fi ≤ F
(
qi;µ−i

)
=π
(
qi, µ−i

)
+ δE

(
π
(
qi, R

(
αR
(
µ−i
)

+ (1− α) si
))
|qi
)

+δ
(
E
(
Ṽ
(
αR
(
µ−i
)

+ (1− α) si
)
|qi
)
− E

(
Ṽ
(
αR
(
µ−i
)

+ (1− α) si
)
|0
))

.

By substituting F
(
qi, µ−i

)
in (2), we have

V
(
qi, F

(
qi, µ−i

)
;µ−i

)
= δE

(
Ṽ
(
αR
(
µ−i
)

+ (1− α) si
)
|0
)
,

and so, for all µ−i,

V
(
µ−i
)

= δE
(
Ṽ
(
αR
(
µ−i
)

+ (1− α) si
)
|0
)
.

In addition, since Ṽ (µi) ≤ δV̄ for all µi where V̄ ≡ supµ−i
V
(
µ−i
)
<∞, this implies

V
(
µ−i
)
≤ δV̄

for all µ−i. Therefore, V
(
µ−i
)

= Ṽ (µi) = 0 for all µ−i and µi, and we conclude

F
(
qi;µ−i

)
= π

(
qi, µ−i

)
+ δE

(
π
(
qi, R

(
αR
(
µ−i
)

+ (1− α) si
))
|qi
)
.
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Proof of Proposition 2. We consider a linear dynamic target-quantity reaction function

R
(
µ−i
)

= a − bµ−i. Our first intermediate result shows that, under this linear R (·), the

supplier’s problem (1) can be simplified as follows:

Lemma A1 Suppose that R (·) is linear. Then, the supplier’s problem can be rewritten as

W
(
µ−i
)

= max
q̂

(
π
(
q̂, µ−i

)
+ δπ

(
q̂, R

(
αR
(
µ−i
)

+ (1− α) q̂
))
− c (1 + δ) q̂

+ δW
(
αR
(
µ−i
)

+ (1− α) q̂
)

+ constant
)
. (3)

Proof. Note that

E
(
π
(
q, µ−i

)
− c (1 + δ) q |q̂

)
=E

((
1− q − µ−i

)
q − c (1 + δ) q |q̂

)
=q̂
(
1− q̂ − µ−i

)
− c (1 + δ) q̂ − σ2

q

=π
(
q̂, µ−i

)
− c (1 + δ) q̂ − σ2

q,

where the expectation being taken over q. Similarly, one can check that

E
(
π
(
q, R

(
αR
(
µ−i
)

+ (1− α) si
))
|q̂
)

=π
(
q̂, R

(
αR
(
µ−i
)

+ (1− α) q̂
))
− (1− b (1− α))σ2

q,

where the expectation is taken over q and si. To see this, observe that

E
(
π
(
q, R

(
αR
(
µ−i
)

+ (1− α) si
))
|q̂
)

=E
(
q − q2 −R

(
αR
(
µ−i
)

+ (1− α) si
)
q |q̂
)

=q̂ − q̂2 − σ2
q − E

(
R
(
αR
(
µ−i
)

+ (1− α)si
)
q |q̂
)
,

(4)

and

E
(
R
(
αR
(
µ−i
)

+ (1− α)si
)
q |q̂
)

=E
((
a− b

(
αR
(
µ−i
)

+ (1− α) (q + εi)
))
q |q̂
)

=E
(
aq − bαR

(
µ−i
)
q − b (1− α) q2 − b (1− α) εiq |q̂

)
=E

(
aq − bαR

(
µ−i
)
q − b (1− α) q2 |q̂

)
=aq̂ − bαR

(
µ−i
)
q̂ − b (1− α)

(
q̂2 + σ2

q

)
=q̂
(
a− b

(
αR
(
µ−i
)

+ (1− α) q̂
))
− b (1− α)σ2

q

=q̂R
(
αR
(
µ−i
)

+ (1− α) q̂
)
− b (1− α)σ2

q. (5)
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By substituting (5) in (4), we have

E
(
π
(
q, R

(
αR
(
µ−i
)

+ (1− α) si
))
|q̂
)

=q̂ − q̂2 − σ2
q − q̂R

(
αR
(
µ−i
)

+ (1− α) q̂
)

+ b (1− α)σ2
q

=q̂
(
1− q̂ −R

(
α
(
µ−i
)

+ (1− α) q̂
))
− (1− b (1− α))σ2

q

=π
(
q̂, R

(
α
(
µ−i
)

+ (1− α) q̂
))
− (1− b (1− α))σ2

q.

Finally, it remains to show that

E
(
W
(
αR
(
µ−i
)

+ (1− α) si
)
|q̂
)

= W
(
αR
(
µ−i
)

+ (1− α) q̂
)

+ constant,

where the expectation is taken over si. To see this, let us represent the supplier’s value

function as, for some w0, w1, w2 ∈ R:

W
(
µ−i
)

= w0 + w1µ−i + w2µ
2
−i,

which follows from the linearity of R (·). Then,

E
(
W
(
αR
(
µ−i
)

+ (1− α) si
)
|q̂
)

=E
(
w0 + w1

(
αR
(
µ−i
)

+ (1− α) si
)

+ w2

(
αR
(
µ−i
)

+ (1− α) si
)2 |q̂)

=w0 + w1

(
αR
(
µ−i
)

+ (1− α) q̂
)

+ w2E
((
αR
(
µ−i
)

+ (1− α) (qi + εi)
)2 |q̂) ,

with expectations being taken over si, qi and εi, and

E
((
αR
(
µ−i
)

+ (1− α) (qi + εi)
)2 |q̂)

=
(
αR
(
µ−i
)

+ (1− α) q̂
)2

+ (1− α)2 σ2
q + (1− α)2 σ2

s.

Thus,

E
(
W
(
αR
(
µ−i
)

+ (1− α) si
)
|q̂
)

= W
(
αR
(
µ−i
)

+ (1− α) q̂
)

+ w2 (1− α)2
(
σ2
q + σ2

s

)
.

This completes the proof of Lemma A1.

Now, we prove that there exists a unique linear equilibrium. From (3), the first-order

condition is given by: at q̂ = R (µ),

0 = −c (1 + δ) + π1 (q̂, µ) + δπ1 (q̂, R (αR (µ) + (1− α) q̂))

+ δπ2 (q̂, R (αR (µ) + (1− α) q̂))R′ (αR (µ) + (1− α) q̂) (1− α)

+ δ (1− α)W ′ (αR (µ) + (1− α) q̂) . (6)
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The envelope theorem implies that

W ′ (µ) = π2 (R (µ) , µ) + δπ2 (R (µ) , R (R (µ)))R′ (R (µ))R′ (µ)α. (7)

By substituting (7) in (6), we can rewrite the first-order condition as follows: at q̂ = R (µ),

0 =− c (1 + δ) + π1 (q̂, µ)

+ δ (π1 (q̂, R (q̂)) + π2 (q̂, R (q̂)) (1− α)R′ (q̂))

+ δ (1− α) (π2 (R (q̂) , q̂) + δαπ2 (R (q̂) , R (R (q̂)))R′ (R (q̂))R′ (q̂)) . (8)

We first show that if b ≤ 1, the first-order condition is both necessary and sufficient. To

see this, differentiate the right-hand side of (6) with respect to q̂ to obtain

K ≡ −2 (1 + δ − (1− α) bδ) + δ (1− α)2W ′′,

where W ′′ is the second-order derivative of W (·), which is constant because W (·) is

quadratic. Thus, if K < 0, the second-order condition is satisfied.

Next, note that, for all µ,

0 = π1 (R (µ) , µ) + δπ1 (R (µ) , R (R (µ))) (9)

+ δπ2 (R (µ) , R (R (µ)))R′ (R (µ)) (1− α)− c (1 + δ)

+ δ (1− α)W ′ (R (µ)) .

Then, by taking derivative with respect to µ, we have

0 = −1− (2− α)δb2 + 2(1 + δ)b− δ(1− α)W ′′b. (10)

This is equivalent to

δ (1− α)W ′′ =
−1− (2− α)δb2 + 2(1 + δ)b

b
.

By substituting this into K, we have

K =
−1 + α− αb (2 + 2δ − bδ)− α2b2δ

b
.

Since −1 + α − α2b2δ < 0 and b > 0, it is sufficient to show 2 + 2δ − bδ ≥ 0 for K < 0.

However, this is immediate as long as b ≤ 1.
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It remains to show that there exist unique a ≥ 0 and 0 < b ≤ 1
2

satisfying (8). By

solving (8) for q̂ and rearranging, we have

q̂ =

(
(1− c)(1 + δ)− (2− α)δa− (1− α)αb2δ2a

2 + (2− (3− 2α)b)δ − (1− α)αb3δ2

)
−
(

1

2 + (2− (3− 2α)b)δ − (1− α)αb3δ2

)
µ−i.

Since q̂ = R
(
µ−i
)
, the following equations should be satisfied:

b =
1

2 + (2− (3− 2α) b) δ − (1− α)αb3δ2
(11)

a =
(1− c)(1 + δ)− (2− α)δa− (1− α)αb2δ2a

2 + (2− (3− 2α)b)δ − (1− α)αb3δ2
. (12)

Note that (11) is equivalent to K (b) = 0, where

K (b) ≡ b
(
2 + (2− (3− 2α) b) δ − (1− α)αb3δ2

)
− 1.

Since K(0) = −1 and K
(
1
2

)
=

δ(4+α(8−δ)+α2δ)
16

≥ 0, the intermediate value theorem implies

that there exists b∗ ∈
(
0, 1

2

]
such that K (b∗) = 0. In addition, such b∗ is unique since

K′′(b) = −2δ (3− 2α + 6 (1− α)αb2δ) < 0, implying strictly concave K (·).16

By substituting b∗ into the equation (12) and rearranging, we have

a∗ =
(1− c) (1 + δ)

2 + (2− (3− 2α)b∗)δ − (1− α)αb∗3δ2 + (2− α) δ + (1− α)αb∗2δ2

≥ 0.

This completes the construction of the unique linear equilibrium, which has the following

value function:

W
(
µ−i
)

= constant− a∗
(
1 + δb∗2α

)
µ−i +

(
−1− (2− α) δb∗2 + 2 (1 + δ) b∗

2b∗δ (1− α)

)
µ2
−i.

16Indeed, K(1) = (1 + αδ) (1− (1− α) δ) > 0, so another real root, if it exists, must lead to a dynamically

unstable equilibrium, which is not relevant for our purpose.
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Proof of Proposition 3. The limit results, limα→1 µ
0 = qC = limδ→0 µ

0, can be directly

checked by evaluating µ0 at α = 1 and δ = 0, respectively. Thus, we only prove the

comparative statics results in the proposition.

First, we show that µ0 is increasing in α. From the proof of Proposition 2, we have

a∗

1 + b∗
=

(1− c) (1 + δ)

L (α)
,

where

L (α) ≡ (1 + b∗)
(
2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2 + (2− α) δ + (1− α)αb∗2δ2

)
.

A tedious computation shows that

L′ (α) = (1 + b∗)
(
2b∗δ − (1− 2α) b∗3δ2 − δ + (1− 2α) b∗2δ2

)
+
∂b∗

∂α
×
(

2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2 + (2− α) δ + (1− α)αb∗2δ2

− (1 + b∗)
(
(3− 2α) δ + 3 (1− α)αb∗2δ2 − 2 (1− α)αb∗δ2

) )
.

For notational ease, let us write

L1 ≡ 2b∗δ − (1− 2α) b∗3δ2 − δ + (1− 2α) b∗2δ2

L2 ≡ 2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2 + (2− α) δ + (1− α)αb∗2δ2

− (1 + b∗)
(
(3− 2α) δ + 3 (1− α)αb∗2δ2 − 2 (1− α)αb∗δ2

)
.

We will prove the result by the following three claims.

Claim 1: L1 ≤ 0.

Note that

L1 =2b∗δ − (1− 2α) b∗3δ2 − δ + (1− 2α) b∗2δ2

=δ
(
2b∗ − (1− 2α) b∗3δ − 1 + (1− 2α) b∗2δ

)
=δ
(
2b∗ + (1− 2α) b∗2δ (1− b∗)− 1

)
.

Also, recall that, by construction,

K (b∗) = b∗
(
2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2

)
− 1 = 0, (13)
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and so,

2b∗ + (1− 2α) b∗2δ (1− b∗)− 1

=2b∗ + (1− 2α) b∗2δ (1− b∗)− b∗
(
2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2

)
=b∗

(
(1− 2α) b∗δ (1− b∗)− (2− (3− 2α) b∗) δ + (1− α)αb∗3δ2

)
=b∗δ

(
b∗
(
(1− 2α) (1− b∗) + 3− 2α + (1− α)αb∗2δ

)
− 2
)
.

Note that

(1− 2α) (1− b∗) + 3− 2α + (1− α)αb∗2δ < 4,

since

4−
(
(1− 2α) (1− b∗) + 3− 2α + (1− α)αb∗2δ

)
=1 + 2α− (1− 2α) (1− b∗)− (1− α)αb∗2δ

=1 + 2α + α (1− b∗)− (1− α)
(
1− b∗ + αb∗2δ

)
≥1 + 2α + α (1− b∗)− (1− α) (1− b∗ + b∗)

>0.

This implies that

b∗
(
(1− 2α) (1− b∗) + 3− 2α + (1− α)αb∗2δ

)
− 2 < 4b∗ − 2 ≤ 0,

which shows that Claim 1 is true.

Claim 2: L2 ≥ 0.

Note that L2 ≥ 0 is equivalent to b∗L2 ≥ 0:

b∗L2 =b∗
(

2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2 + (2− α) δ + (1− α)αb∗2δ2

− (1 + b∗)
(
(3− 2α) δ + 3 (1− α)αb∗2δ2 − 2 (1− α)αb∗δ2

) )
≥ 0.

From (13), this can be rewritten as

1 + (2− α) δb∗ + (1− α)αb∗3δ2

− b∗ (1 + b∗)
(
(3− 2α) δ + 3 (1− α)αb∗2δ2 − 2 (1− α)αb∗δ2

)
≥ 0

⇐⇒ 1 + (2− α) δb∗ + (1− α)αb∗3δ2

− b∗ (1 + b∗) δ (3− 2α + (1− α)αδb∗ (3b∗ − 2)) ≥ 0.
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Note that

1 + (2− α) δb∗ + (1− α)αb∗3δ2

− b∗ (1 + b∗) δ (3− 2α + (1− α)αδb∗ (3b∗ − 2))

≥1 + δb∗ (2− α− (1 + b∗) (3− 2α))

=1− δb∗ (1− α + (3− 2α) b∗) .

Again, using (13), the right-hand side becomes

b∗
(
2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ2 − δ (1− α + (3− 2α) b∗)

)
=b∗

(
2 + (1 + α− (6− 4α) b∗) δ − (1− α)αb∗3δ2

)
≥b∗

(
2− (2− 3α) δ − (1− α)αb∗3δ2

)
.

Note that this is nonnegative if α ≥ 2
3
. Otherwise,

b∗
(
2− (2− 3α) δ − (1− α)αb∗3δ2

)
≥ b∗

(
2− (2− 3α)− (1− α)αb∗3

)
= b∗α

(
3− (1− α) b∗3

)
≥ 0.

Thus, Claim 2 is true.

Claim 3: ∂b∗

∂α
≤ 0.

Recall that K (b) = b
(
2 + (2− (3− 2α) b) δ − (1− α)αb3δ2

)
− 1. Thus,

∂K (b)

∂α
= b

(
2bδ − (1− 2α) b3δ2

)
= b2δ

(
2− (1− 2α) b2δ

)
≥ b2δ

(
2− b2δ

)
≥ 0.

This completes the proof of Claim 3 because (i) b∗ is given by the unique solution to

K (b) = 0 for b ∈ (0, 1/2]; (ii) K(0) < 0; and (iii) K (·) is increasing in α.

Next, we show that µ0 is decreasing in δ using another expression for µ0. By substituting

q̂ = R (µ0) = µ0 in (8), we have

µ0 =
(1− c) (1 + δ)

3 (1 + δ) + (1− α) (1− b∗) δ + (1− α)αb∗2δ2
.
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Thus, µ0 is decreasing in δ if and only if

3 + (1− α)
δ

1 + δ

(
1− b∗ + αb∗2δ

)
is increasing in δ. Since δ

1+δ
is increasing in δ and 1 − b∗ + αb∗2δ ≥ 0, it suffices to show

that 1− b∗ + αb∗2δ is increasing in δ.

Taking the derivative with respect to δ in 1− b∗ + αb∗2δ yields

−∂b
∗

∂δ
(1− 2αb∗δ) + αb∗2 ≥ −∂b

∗

∂δ
(1− 2αb∗δ) .

Thus, if ∂b∗

∂δ
< 0, the proof is complete since 1− 2αb∗δ > 0.

Now, applying the implicit function theorem to (13), we have

∂b∗

∂δ
= −

(
b∗ (2− (3− 2α) b∗ − 2 (1− α)αb∗3δ)

2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ + b
(
2αδ − 3 (1− α)αb∗2δ∗2

)) .
Note that both numerator and deonominator are positive. To see this, observe

2− (3− 2α) b∗ − 2 (1− α)αb∗3δ ≥ 2− 3b∗ − 1

16
> 0,

and

2 + (2− (3− 2α) b∗) δ − (1− α)αb∗3δ + b
(
2αδ − 3 (1− α)αb∗2δ∗2

)
≥ 2− (1− α)αb∗3δ2,

where the inequality follows from 2− (3− 2α) b∗ > 0 and

2αδ − 3 (1− α)αb∗2δ2 = αδ
(
2− 3 (1− α) b∗2δ

)
≥ αδ

(
2− 3b∗2δ

)
≥ 5αδ

4
.

This completes the proof of the proposition.

Proof of Proposition 4. The limit results, lim(α,δ)→(0,1) µ
0 = 3(1−c)

10
and limα→0 q̂

∗ = qM ,

can be directly checked by evaluating µ0 and q̂∗ at the corresponding values of α and δ.

Thus, it is sufficient to show that µ0 > q̂∗ for all δ ∈ (0, 1) and α ∈ (0, 1).

To this end, we will compare the first-order conditions in the simultaneous-offers game

and the alternating-offers game at δ = 1. On the one hand, the first-order condition in the

simultaneous-offers game is given as:

π1 (q̂∗, q̂∗) + (1− α)π2 (q̂∗, q̂∗) = c.
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On the other hand, by substituting q̂ = R (q̂) = µ0 in (8) and rearranging, we have

2π1

(
µ0, µ0

)
+ (1− α) π2

(
µ0, µ0

)
(1− b∗ (1− b∗α)) = 2c,

which implies that

π1 (q̂∗, q̂∗) + (1− α) π2 (q̂∗, q̂∗) = π1

(
µ0, µ0

)
+ (1− α)π2

(
µ0, µ0

)(1− b∗ (1− b∗α)

2

)
> π1

(
µ0, µ0

)
+ (1− α)π2

(
µ0, µ0

)
,

which is equivalent to

− (4− α) q̂∗ > − (4− α)µ0 ⇐⇒ q̂∗ < µ0.

This completes the proof.

Appendix B: Beta-Binomial Specification

Here, we propose an alternative setup in which (i) the variable profit (P (qi + q−i)− c) qi
is always nonnegative; (ii) the conditional expectation of the rival retailer’s quantity is a

weighted average of the realized signal and the equilibrium target quantity; and (iii) the

weight is simply characterized by relative volatility of mistakes and signals. Thus, the issue

of negative profits under the normal specification is not crucial to our analysis and avoided

without affecting our main results.

To be more precise, suppose that target and actual quantities lie on the bounded interval,[
0, 1−c

2

]
, so that an ex-post margin (P (qA + qB)− c) qi is always nonnegative. Given the

target quantity q̂ ∈
(
0, 1−c

2

)
, we assume that the actual quantity with mistakes is drawn

from the beta distribution on the support
[
0, 1−c

2

]
with the left and right parameters

(θ∗ (q̂) , ρ∗ (q̂)) =

(
2 (k − 1) q̂

1− c
,
(k − 1) (1− c− 2q̂)

1− c

)
,

for some k > 1. This distribution yields, for each q̂ ∈
(
0, 1−c

2

)
,

E (q |q̂ ) = q̂ and V ar (q |q̂ ) =
1

k
q̂

(
1− c

2
− q̂
)
.

Note that k governs the volatility of mistakes, and for a given k, there is a larger chance of

mistakes when the target quantity is at more intermediate levels.17

17For the end points q̂ = 0 and q̂ = 1−c
2 , the actual quantities are assumed to be drawn from the

degenerate distributions at q = 0 and q = 1−c
2 , respectively.
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For the signal distribution, we assume that, given the actual quantity q, the signal is

given by s−i = x(1−c)
2n

, where x follows the binomial distribution
(
n, 2q

1−c

)
. Recall that x

takes a value in {0, 1, 2, ..., n}, so s−i takes a value in {0, 1−c
2n
, 1−c

n
, ..., 1−c

2
}. Note that the

number of experiments n governs the precision of the signal.

Under this formulation, we obtain the following result.

Proposition 5 Let q̂ ∈
[
0, 1−c

2

]
be the target quantity chosen by U . Then,

E (q |q̂, s) =

(
1

1 + k−1
n

)
s+

(
1− 1

1 + k−1
n

)
q̂.

Proof. For simplicity, we write θ∗ = θ∗ (q̂) and ρ∗ = ρ∗ (q̂). The probability of s−i = s

conditional on the actual quantity q is denoted by f (s|q), and the density of the actual

quantity q is denoted by f (q|q̂) . Finally, their joint probability will be written as f (q, s|q̂).
First, observe that

f (s−i = s|q̂) = f

(
x =

2ns

1− c
|q̂
)

=

∫ 1−c
2

q=0

f

(
x =

2ns

1− c
|q
)
f (q |q̂ ) dq

=

∫ 1−c
2

q=0

((
n
2ns
1−c

)(
2q

1− c

) 2ns
1−c
(

1− 2q

1− c

)n− 2ns
1−c

)
f (q |q̂ ) dq

=

(
n
2ns
1−c

)∫ 1−c
2

q=0

(
2q

1− c

) 2ns
1−c
(

1− 2q

1− c

)n− 2ns
1−c

(
qα

∗−1 (1−c
2
− q
)β∗−1

B (θ∗, ρ∗)
(
1−c
2

)α∗+β∗−1

)
dq

=
1

B (θ∗, ρ∗)

(
n
2ns
1−c

)∫ 1−c
2

q=0

(
2q
1−c

) 2ns
1−c
(
1− 2q

1−c

)n− 2ns
1−c qθ

∗−1 (1−c
2
− q
)ρ∗−1(

1−c
2

)θ∗+ρ∗−1 dq,

where B(θ, ρ) is the beta function,

B(θ, ρ) =

∫ 1

x=0

xθ−1(1− x)ρ−1dx.

In addition,

f (q, s |q̂ ) = f (s |q ) f (q |q̂ )

=

(
n
2ns
1−c

)(
2q

1− c

) 2ns
1−c
(

1− 2q

1− c

)n− 2ns
1−c qθ

∗−1 (1−c
2
− q
)ρ∗−1

B (θ∗, ρ∗)
(
1−c
2

)θ∗+ρ∗−1 .
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Therefore,

f (q |q̂, s) =
f (q, s |q̂ )

f (s |q̂ )
=

(
2q
1−c

) 2ns
1−c
(
1− 2q

1−c

)n− 2ns
1−c qθ

∗−1 (1−c
2
− q
)ρ∗−1∫ 1−c

2

q=0

(
2q
1−c

) 2ns
1−c
(
1− 2q

1−c

)n− 2ns
1−c qθ

∗−1
(
1−c
2
− q
)ρ∗−1

dq

=
q

2ns
1−c

+θ∗−1 (1−c
2
− q
)n− 2ns

1−c
+ρ∗−1∫ 1−c

2

q=0
q

2ns
1−c

+θ∗−1 (1−c
2
− q
)n− 2ns

1−c
+ρ∗−1

dq
.

Note that, letting y ≡ 2q
1−c , the denominator can be written as∫ 1

y=0

(
1− c

2
y

) 2ns
1−c

+θ∗−1(
1− c

2
− 1− c

2
y

)n− 2ns
1−c

+ρ∗−1(
1− c

2

)
dy

=

(
1− c

2

)n+θ∗+ρ∗−1 ∫ 1

y=0

y
2ns
1−c

+θ∗−1 (1− y)n−
2ns
1−c

+ρ∗−1 dy.

Therefore, we have

f (q |q̂, s) =
q

2ns
1−c

+θ∗−1 (1−c
2
− q
)n 2ns

1−c
+ρ∗−1(

1−c
2

)n+θ∗+ρ∗−1 ∫ 1

y=0
y

2ns
1−c

+θ∗−1 (1− y)n−
2ns
1−c

+β∗−1 dy
.

Indeed, this is the beta distribution on the support
[
0, 1−c

2

]
with the left and right param-

eters

(θ∗∗, ρ∗∗) =

(
2ns

1− c
+ θ∗, n− 2ns

1− c
+ ρ∗

)
.

Thus, we have

E (q |q̂, s) =

(
1− c

2

)(
θ∗∗

θ∗∗ + ρ∗∗

)
=

(
1− c

2

)( 2ns
1−c + θ∗

n+ θ∗ + ρ∗

)

=

(
n

n+ θ∗ + ρ∗

)
s+

(
θ∗ + ρ∗

n+ θ∗ + ρ∗

)(
1− c

2

)(
θ∗

θ∗ + ρ∗

)
.

Now, recall that

(θ∗, ρ∗) =

(
2 (k − 1) q̂

1− c
,
(k − 1) (1− c− 2q̂)

1− c

)
,

so we have θ∗ + ρ∗ = k − 1 for any q̂. Note also that(
1− c

2

)(
θ∗

θ∗ + ρ∗

)
= E (q |q̂ ) = q̂.

Therefore, we conclude that

E (q |q̂, s) =

(
n

n+ k − 1

)
s+

(
1− n

n+ k − 1

)
q̂.
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