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Abstract

Nowadays, a common practice to forecast integrated variance is to do simple OLS

autoregressions of the observed realized variance data. However, non-parametric esti-

mates of the tail index of this realized variance process reveal that its second moment

is possibly unbounded. In this case, the behavior of the OLS estimators and the cor-

responding statistics are unclear. We prove that when the second moment of the spot

variance is unbounded, the slope of the spot variance’s autoregression converges to

a random variable when the sample size diverges. Likewise, the same result holds

when one consider either integrated variance’s autoregression or the realized variance

one. We then consider a class of variance models based on diffusion processes hav-

ing an affine form of drift, where the class includes GARCH and CEV processes, and

we prove that IV estimations with adequate instruments provide consistent estima-

tors of the drift parameters as long as the variance process has a finite first moment

regardless of the existence of finite second moment. In particular, for the GARCH dif-

fusion model with fat tails, an IV estimation where the instrument equals the sign of

the (demeaned) lagged value of the variable of interest provides consistent estimators.

Simulation results corroborate the theoretical findings of the paper.
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1. Introduction

In this paper, we are interested in using high-frequency based measures to forecast

future variance. A common practice is to approximate the latent daily integrated

variance by high-frequency based realized measures like realized variance (Andersen

et al. (2001)) or robust-to-noise measures (Zhang et al. (2005); Barndorff-Nielsen et al.

(2008); Jacod et al. (2009)), and then to estimate by OLS a simple autoregressive

regression of this realized measures to get a forecast of the integrated variance. This

autoregressive regression is often misspecified because the dynamics of the integrated

variance is more complex than a simple autoregressive process. For instance, if the

true instantaneous (or spot) variance is a square-root process, then the integrated and

realized variances are ARMA (1,1) processes (Barndorff-Nielsen and Shephard (2002);

Meddahi (2003)). Still, even if the autoregression model is misspecified, it provides a

very accurate forecast because integrated variance as well as high-frequency realized

measures are persistent and therefore few lags are sufficient to predict well future

volatility (Andersen et al. (2003); Andersen et al. (2004)).

On the other hand, the GARCH era (Engle (1982); Bollerslev (1986)) based on

parametric models of daily data provides very useful information about the variance

process. One of them which is a primary interest in this paper is fat tails. When

one estimates a daily GARCH model on stock returns or exchange rates, one often

finds that the returns’ fourth moment is not bounded or close to be unbounded. If the

fourth moment of the returns is unbound, then the second moment of the daily realize

variance defined as the sum of intra-daily squared returns is also unbounded. Conse-

quently, the interpretation, based on L2 projections, of the autoregressive regression

and the OLS estimation are questionable. Likewise, the delivered forecast and all the

statistical tools, relying on Gaussian limit theory, used to assess the quality of the

forecast could be invalid.

The doubt about the finiteness of the fourth moment of the returns is based on

a parametric model of the volatility. In contrast, an important contribution of the

high-frequency volatility literature is that the availability of a lot of information allows

one to get non-parametric measures of the variance, and therefore, to get rid of these

volatility parametric models. It is therefore necessary to assess the finiteness of the

second moment of realized measures in a non-parametric way. The solution hinges on
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a non-parametric estimation of the tail index. We use the Hill’s (1975) estimator to

our data and we get the same result. More precisely, we find that the Hill estimator of

the tail index of the daily returns is close to four, while it is close to two for the daily

realized variance, and two other popular measures which are robust to the presence of

jumps, namely the bipower variance of Barndorff-Nielsen and Shephard (2004b, 2006)

and the threshold variance estimator of Jacod (2008, 2012) and Mancini (2009).

In this paper, we revisit the results about the autoregressive regression of the vari-

ance process like Andersen et al. (2004) when the second moment of the spot variance

is possibly unbounded, implying that the second moment of integrated and realized

variances are unbounded.1 When the instantaneous variance has an unbounded sec-

ond moment, then the results in Andersen et al. (2004) are no more valid because

one can not compute population autoregression parameters.

We study empirical regressions instead of population regressions. More precisely,

we analyze the asymptotic behavior of the OLS estimator of the autoregressions. We

consider autoregressions of three variables: the spot variance, the integrated variance

and the realized variance. Of course, the first two autoregressions are not doable

in practice because the variables are not observed, but still the two autoregressions

provide good benchmarks. In particular, the third autoregression will try to mimic

the second one.

The asymptotic behavior of an OLS estimator under fat tails is ambiguous and

depends on the model. For instance, when one considers an autoregressive process of

order one with i.i.d. errors and unbounded variance, the OLS estimator is consistent

whether the autoregressive parameter is smaller than one (Hannan and Kanter (1977)

and Knight (1987)) or equals to one (Chan and Tran (1989) and Phillips (1990)).

In contrast, when one considers an ARCH or GARCH process, the autocorrelation

parameters of the squared process converge to random variables when the fourth

moment of the process is unbounded (Davis and Mikosch (1998) and Mikosch and

Starica (2000)). It is therefore needed to study the behavior of the OLS estimator

when one does an autoregression of volatility measures.

When we study the autoregressions, we consider two types of asymptotic ap-

1When one considers a continuous time model without jumps and without market microstructure
noise, the fourth moment of the intra-day returns is unbounded if and only if the second moment of
the instantaneous variance is infinite.
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proaches. Two time-dimension variables will play a role in these asymptotic analysis:

∆ which is the length of sub-periods and the time span denoted T . In the first

asymptotic approach, we assume that ∆ → 0 while T is fixed or diverges to ∞. We

do this type of asymptotic because we want to characterize the behavior of the OLS

estimators without making a parametric model assumption as did Andersen et al.

(2004). In the second asymptotic approach, we keep ∆ fixed and allow T → ∞ at

the cost of making a parametric assumption of the variance diffusion process.

In the first asymptotic analysis with ∆ → 0, we characterize the behavior of

the OLS estimators of the three regressions’ slopes. When the spot variance process

has a bounded second moment, we prove that the OLS estimators converge to finite

quantities, which are the same ones as the population parameters derived in Andersen

et al. (2004). In contrast, when the spot variance has an unbounded second moment,

we prove that the OLS estimators converge to random variables. Both the simulations

and the comparison with the results in Andersen et al. (2004) when the spot variance

has a finite second moment corroborate the good quality of our approach.

These results are obviously negative. Providing positive results in a general con-

text is not easy because one needs to specify the object of interest. We therefore con-

sider a class of variance models based on diffusion processes having an affine form of

drift, where the class includes GARCH and CEV processes, with possibly unbounded

second moment. For this semiparametric class of models, we follow the literature on

regressions with fat tails like Blattberg and Sargent (1971) and Samorodnitsky et al.

(2007) by considering instrumental variable (IV) estimations. We prove that the IV

estimators become consistent estimators of the drift parameters when instruments

are chosen appropriately.

Samorodnitsky et al. (2007) studied the estimation of linear regression models

where the explanatory and the noise variables have fat tails. It considered estimators

that have an instrumental variable interpretation where the instrument is a signed

power of the explanatory variable, with the OLS being a particular case. The choice

of the power is selected for either efficiency purposes or for getting an estimator with

a normal asymptotic distribution, which is often not the case of the OLS estimator

when it is consistent. However, in this paper, we select the instruments for consistency

purposes of the drift parameters. The asymptotic distribution of the estimator as well

as the efficiency question are not studied and left for future research.
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When ∆ is fixed, unlike the asymptotics with ∆→ 0, we need a conditional mo-

ment restriction for the asymptotics of IV estimators. It is well known for a stationary

diffusion with affine drift that the conditional mean is also affine as long as the diffu-

sion has a bounded second moment (see for instance Meddahi and Renault (2004)).

We prove for a GARCH diffusion that the result is still valid when the second moment

is unbounded. We then show that the IV estimation with adequate instruments leads

to consistent estimators of the drift parameters. A particular instrument we study

is the sign of the lagged value of the demeaned spot variance, corresponding to a

power zero of the signed power instrument mentioned above. This estimator is first

proposed by Cauchy (1836), and is often referred to as the “Cauchy estimator” (see,

e.g., So and Shin (1999); Phillips et al. (2004); Choi et al. (2016) for the recent use

of the Cauchy estimator).

Interestingly, Jean-Marie Dufour used in several studies sign-based methods for in-

ference purposes, especially for exact inference in finite sample. In particular, he used

such approach in Coudin and Dufour (2009, 2017) in order to provide inference about

the slope parameter in a linear regression model without making moment restrictions

on the disturbance errors and therefore allowing for fat tails. The assumption made

in these papers is a median restriction on the errors conditional on the explanatory

variables. In other words, we are using the same approach with a slightly different

framework because we assume that the (conditional) first moment of the errors exists

and equals zero but we do not make assumptions on higher moments.

The paper is organized as follows. The next section provides the setup, an em-

pirical motivation for fat tails, and various regressions. In Section 3, we analyze the

asymptotic behavior of the OLS estimators when ∆ → 0. Section 4 studies the IV

estimation, while Section 5 provides two extensions, including the estimation with a

fixed ∆. Section 6 provides simulations to assess the finite sample properties of the

estimators, while the last section concludes. All the proofs are provided in Appendix.

Throughout the paper we use “PT ∼ QT” to denote PT = QT (1+o(1)). Similarly,

“PT ∼p QT” and “PT ∼d QT” mean PT = QT (1 + op(1)) and PT =d QT (1 + op(1)),

respectively. These notations, as well as other standard notations used in asymptotics,

will be used frequently throughout the paper without further references.
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2. Model and Preliminaries

2.1. Spot, Integrated and Realized Variances

We consider a price process (Pt, 0 ≤ t ≤ T ) defined on a filtered probability space

(Ω,F , (Ft)t≥0,P). Our basic assumption is that Pt is a Brownian semimartingale with

the following form:

d log(Pt) = Dtdt+ V
1/2
t dW P

t ,

where W P
t is a Brownian motion, Dt and Vt are adapted processes with càdlàg paths.

For a ∆-interval, we define the spot variance (vi), integrated variance (xi) and realized

variance (yi) of the price process (Pt) as

vi = Vi∆, xi =
1

∆

∫ i∆

(i−1)∆

Vtdt, yi =
1

∆

n∑
j=1

(
r

(δ)
(i−1)∆+jδ

)2

, (2.1)

for i = 1, · · · , N withN∆ = T , where r(δ) is the δ-period return defined as r
(δ)
(i−1)∆+jδ =

log(P(i−1)∆+jδ) − log(P(i−1)∆+(j−1)δ) for j = 1, · · · , n with nδ = ∆. It is well known

that the realized variance y is a noisy measure of the integrated variance x, and

satisfies

(n/2)1/2(yi − xi)→d ηiN(0, 1), (2.2)

where η2
i = ∆−1

∫ i∆
(i−1)∆

V 2
t dt, as n → ∞ for fixed ∆ and for each i = 1, · · · , N . See,

e.g., Barndorff-Nielsen and Shephard (2004a). Moreover, the convergence (2.2) holds

jointly for i = 1, · · · , N if T = N∆ is fixed (see, e.g., Jacod and Protter (1998)).

In this paper, we analyze the asymptotic properties of various estimators for the

volatility regression. Specifically, we consider the first order autoregression

zi+1 = αz + β(k)
z zi−k + ui+1 with k ≥ 0 (2.3)

for z = v, x, y, and estimate the slope coefficient β
(k)
z using OLS or IV method.

Our asymptotics for z = v, x involve two parameters, the sampling interval ∆ and

the time span T , and it is developed under the assumption that ∆ → 0 and T →
∞ simultaneously. On the other hand, the asymptotics for z = y involve three

parameters, the sampling interval ∆ at low-frequency, the sampling interval δ at
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high-frequency, and the time span T . In this case, the asymptotics are developed

under the assumption that δ/∆→ 0, ∆→ 0 and T →∞ simultaneously.

To effectively analyze the large T asymptotics, we assume that the underlying

variance process V is a diffusion process on D = (v, v) ⊂ R driven by

dVt = µ(Vt)dt+ σ(Vt)dWt, (2.4)

where W is a Brownian motion, and µ and σ are respectively drift and diffusion

functions of V . To obtain more explicit asymptotic results, we mainly consider a

pure diffusion V without having leverage effects, i.e., each of V and D is independent

of W P , unless we mention that they are dependent. We believe that the implications

of our results under no leverage effect remain valid for the model with leverage effects.

We let s be the scale function defined as

s(v) =

∫ v

y

exp

(
−
∫ x

y

2µ(z)

σ2(z)
dz

)
dx, (2.5)

where the lower limits of the integrals can be arbitrarily chosen to be any point y ∈ D.

Defined as such, the scale function s is uniquely identified up to any increasing affine

transformation, i.e., if s is a scale function, then so is as+ b for any constants a > 0

and −∞ < b <∞. We also define the speed density

m(v) =
1

(σ2s′)(v)
(2.6)

on D, where s′ is the derivative of s, often called the scale density, which is assumed

to exist. The speed density is defined to be the measure on D given by the speed

density with respect to the Lebesgue measure.

Throughout this paper, we assume

Assumption 2.1. (a) σ2(v) > 0 for all v ∈ D, and (b) µ(v)/σ2(v) and 1/σ2(v) are

locally integrable at every v ∈ D.

Assumption 2.1 provides a simple sufficient set of conditions to ensure that a

weak solution to the stochastic differential equation (2.4) exists uniquely up to an

explosion time. See, e.g., Theorem 5.5.15 in Karatzas and Shreve (1991). Note,

under Assumption 2.1, that both the scale function s and speed density m are well
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defined, and that the scale function is strictly increasing, on D. Consequently, the

natural scale diffusion V s of V , where V s = s(V ), is well defined with speed density

ms = (m/s′) ◦ s−1. It follows immedaitely from Ito’s lemma that the natural scale

diffusion V s has no drift term. Following Kim and Park (2017), we use the natural

scale representation in the development of our long span asymptotics.

2.2. Population Regressions with GARCH Diffusions

In this section, we study the volatility regressions in population. Under E(V 2
t ) <∞,

Andersen et al. (2004) analyzed the volatility regressions in population. These authors

considered the Eigenfunction Stochastic Volatility (ESV) model of Meddahi (2001) to

derive analytical forecast results. Examples of ESV includes the square-root model,

the log-normal stochastic volatility model and the GARCH diffusion model. We focus

here on the GARCH diffusion model of Nelson (1990) because this example allows for

unbounded moments while the two other ones lead to bounded ones. More precisely,

assume that the spot variance process Vt, defined on (0,∞), is given by

dVt = κ(µ− Vt)dt+ σVtdWt. (2.7)

Under the stationarity conditions on Vt, one can easily prove that the second moment

of Vt is bounded if and only if σ2 < 2κ.

2.2.1 GARCH Diffusions with E(V 2
t ) <∞

Andersen et al. (2004) computed the population values of the autocovariances of

spot (v), integrated (x) and realized variances (y) under E(V 2
t ) < ∞. From these

quantities, one gets the corresponding autoregressive coefficients βv, βx and βy. In

particular, one has

βv = exp(−κ∆), βx =
1

2

(1− exp(−κ∆))2

exp(−κ∆) + κ∆− 1
, βy =

a2
1

∆2κ2

(1− exp(−κ∆))2

V ar(y)
,

where

V ar(y) = 2
a2

1

∆2κ2
(exp(−κ∆) + κ∆− 1) +

4

δ∆

(
a2

0δ
2

2
+
a2

1

κ2
(exp(−κδ) + κδ − 1)

)
,
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with a0 = E(Vt) = µ and a2
1 = V ar(Vt) = µ2σ2/(2κ− σ2).

One should notice that in this example, the spot variance is an AR(1) process

while both integrated and realized variances are ARMA(1,1) processes. In addition,

the three processes have the same autoregressive root which equals exp(−κ∆).

When ∆ is small, one gets

βv = 1− κ∆ + o(∆), βx = 1− 2

3
κ∆ + o(∆).

Likewise, when both ∆ and δ/∆ are small, one gets

βy = 1− 2

3
κ∆− 2

δ

∆

E(V 2
t )

V ar(Vt)
+ o(∆) + o(δ/∆)

with V ar(Vt) = µ2σ2/(2κ − σ2) and E(V 2
t ) = 2κµ2/(2κ − σ2). It is interesting to

notice that, as δ/∆,∆→ 0, we have

βv − 1 ∼ −∆κ, βx − 1 ∼ −∆
2

3
κ, βy − 1 ∼ −∆

2

3
κ− 4

δ

∆

κ

σ2
, (2.8)

that is, integrated variance has a larger first order autocorrelation than the spot and

realized variances.

2.2.2 GARCH Diffusions with E(Vt) <∞

One can easily prove that

Vt+∆ = µ+ exp(−κ∆)(Vt − µ) + εt+∆, εt+∆ = σ

∫ t+∆

t

exp(−κ(t+ ∆− u))Vudu.

When E(V 2
t ) < ∞, εt+∆ is a martingale-difference-sequence (m.d.s.), which implies

that

E[Vt+∆ | Vt] = µ+ exp(−κ∆)(Vt − µ). (2.9)

However, the m.d.s. result is not valid when E(V 2
t ) =∞ because

∫ t+∆

0
exp(−κ(t+∆−

u))Vudu is not a martingale but a local martingale. Interestingly, we are able to prove

that (2.9) is still valid when Vt is a stationary GARCH diffusion with E(Vt) < ∞,
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whether E(V 2
t ) is finite or not.2

Lemma 2.1. For any ∆ > 0, we have

E[(vi+1 − µ)− exp(−κ∆)(vi − µ)|vi] = 0. (2.10)

When E(V 2
t ) <∞, the previous result implies that Vt is an AR(1), from which one

can estimate exp(−κ∆) by using an autoregression of order one of the spot variance.

However, both the integrated and realized variances are ARMA(1,1) processes, which

implies that first order autoregressions of these variables will not deliver a consis-

tent estimator of the autoregressive parameter exp(−κ∆). However, Meddahi (2003)

derived multiperiod moment restrictions fulfilled by the integrated and realized vari-

ances when E(V 2
t ) <∞. The following result proves that these multiperiod moment

restrictions are still valid when E(V 2
t ) =∞.

Proposition 2.2. Let ∆ > 0. (a) For z = v, x, we have

E[(zi+1 − µ)− exp(−κ∆)(zi − µ)|zi−1] = 0. (2.11)

(b) If Dt = 0 almost surely for all t ≥ 0, then the result in Part (a) holds for z = y.

Proposition 2.2 will allow us to estimate consistently the coefficient exp(−κ∆)

even when E(V 2
t ) =∞ by using the following corollary:

Corollary 2.3. Let r : R→ R be bounded such that E[(zi − µ)r(zi−1 − µ)] 6= 0 for a

given ∆ > 0. If Dt = 0 almost surely for all t ≥ 0, we have

E[(zi+1 − µ)r(zi−1 − µ)]

E[(zi − µ)r(zi−1 − µ)]
= exp(−κ∆)

for z = v, x, y.

2.3. Empirical Evidences of Fat Tails

We now assess the magnitude of tails of empirical data. We use trade data on the

SPDR S&P 500 ETF (SPY), which is an exchange traded fund (ETF) that tracks

2We are very grateful to Jean Jacod for providing us the proof of the result.
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the S&P 500 index. Our primary sample comprises 10 years of trade data on SPY

starting from June 15, 2004 through June 13, 2014 as available in the New York

Stock Exchange Trade and Quote (TAQ) database. This tick-by-tick dataset has

been cleaned according to the procedure outlined by Barndorff-Nielsen et al. (2008).

We also remove short trading days leaving us with 2,497 days of trade data. In

addition, we consider three subperiods: Before Crisis, from June 15, 2004 through

August 29, 2008 (1,053 trading days); During Crisis, from September 2, 2008 through

May 29, 2009 (185 trading days), and After Crisis, from June 1, 2009 through June

13, 2014 (1,259 trading days).

We estimate the tail index of the daily open-to-close returns and daily realized

variance based on five minutes intra-day returns. Because we could have jumps

that may affect the tail of the realized variance data, we also consider daily bipower

variation which is a consistent estimator of integrated variance under the presence of

jumps (see Barndorff-Nielsen and Shephard (2003, 2004b, 2006); Barndorff-Nielsen

et al. (2005); Barndorff-Nielsen et al. (2006)) as well as the threshold estimator of

integrated variance (see Jacod (2008, 2012); Mancini (2009); Jacod and Rosenbaum

(2013)).

We estimate the tail index by using the Hill’s (1975) estimator. Let (Xi)
n
i=1 be a

stationary time series with

P[Xi > x] ∼ x−α`(x), x→∞,

for some slowly varying function `. The Hill’s estimator for α−1 which arose in the

i.i.d. context as a conditional MLE is defined as

h =
1

kn

kn∑
i=1

log(X(i)/X(kn)),

where (X(i))
n
i=1 is the order statistics X(n) ≤ · · · ≤ X(kn) ≤ · · · ≤ X(1) for some kn ≤ n

such that kn →∞ and kn/n→ 0 as n→∞.

The results by Hsing (1991) and Resnick and Stărică (1995) indicate that the Hill

estimator is asymptotically quite robust with respect to deviations from independence;

Resnick and Stărică (1998) prove consistency under ARCH-type dependence. See

also Hill (2010) for some other processes including ARFIMA, FIGARCH, explosive
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GARCH, nonlinear ARMA-GARCH and etc.

Valid standard errors of the Hill estimator are available for some specific models

with serial correlation. Therefore, we will not provide any of them. Instead, we follow

the literature by providing Hill’s plots, that is by varying the integer kn. A flat area

is viewed as a good estimator of the tail index. As usual, we truncate kn. In practice

we start with k = 25.

Figure 1 depicts the Hill index of the returns and three volatility measures over

the whole period for kn between 25 and 500. The first panel provides the estimator

for the returns, which is clearly below four. The second panel depicts the tail index

of the three volatility measures. The plots suggest that the tail of these measures is

below two. Observe that the three plots have flat areas, with a tail index between 1.2

and 1.4. One should notice that the plots for the three volatility measures are quite

close.

The period considered in the previous figure includes the financial crisis. A natural

question is whether the strong empirical evidence of fat tails is driven by the crisis’

period. We therefore carry the Hill estimators for the periods before, during, and

after crisis, as explained above. Given the length of the crisis period (185 trading

days), we vary kn from 25 to 150. Figure 2 depicts the Hill index of the returns on

the top panel and the realized volatility on the bottom panel for the three periods

while Figure 3 depicts those of the bipower (top panel) and threshold (bottom panel)

measures. Clearly, the crisis period exhibits fatter tails than the other two periods for

the four variables. However, both the periods before and after the crisis suggest very

fat tails with a tail index slightly below four for the returns and around two for the

three volatility measures. Therefore, the evidence of fat tails and unbounded second

moment for the volatility measures is quite strong.

3. Least Square Estimates

In this section, we consider the OLS estimator β̂
(k)
z for β

(k)
z in (2.3) given by

β̂(k)
z =

∑N−1
i=k+1(zi−k − zN)zi+1∑N−1
i=k+1(zi−k − zN)2
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where zN is the sample mean of (zi−k : i = k + 1, · · · , N − 1). For k = 0, we simply

write β
(0)
z = βz and β̂

(0)
z = β̂z.

3.1. Primary Asymptotics

Recall that T = N∆ and ∆ = nδ. For our asymptotics here we let δ/∆,∆→ 0, with

T being fixed or T →∞ simultaneously as δ/∆,∆→ 0. In case we have δ/∆,∆→ 0

and T → ∞ simultaneously, we assume that δ/∆,∆ → 0 sufficiently fast relative to

T →∞. It is indeed more relevant in a majority of practical applications, which rely

on observations collected at small sampling intervals over moderately long span.

In our asymptotics, we frequently deal with various functional transforms of D

and V over time interval [0, T ]. To effectively handle such functional transforms, we

define

TD = max
0≤t≤T

|Dt| and T (f) = max
0≤t≤T

|f(Vt)|

for some function f : D → R. We also denote by ι the identity function on D, and

ι(v) = v for all v ∈ D. Consequently, we have T (ι) = max0≤t≤T |Vt| for the identity

function. Obviously, TD and T (ι) are the asymptotic orders of extremal process of D

and V , respectively. The order of the extremal process is known for a wide class of

diffusions. For instance, under some regularity conditions, the extremal process of a

stationary diffusion V is of order Op(s
−1(T )), where s is the scale function of V , to

which the reader is referred to, e.g., Davis (1982). More generally, we may obtain the

exact rate of T (f) from the asymptotic behavior of extremal process. In particular, if

f is regularly varying and cT is the order of the extremal process, then the asymptotic

order of T (f) is given by Op(f(cT )).

Assumption 3.1. (a) σ2 is twice continuously differentiable on D, and (b) for f = µ,

σ2, σ2′, σ2′′ and ι, there is a locally bounded function ω : D → R such that |f(v)| ≤
ω(v) for all v ∈ D.

The differentiability condition of σ2 in Assumption 3.1 (a) is routinely assumed

in the study of diffusion models. Under Assumption 3.1 (a), the majorizing function

ω in Assumption 3.1 (b) always exists as long as µ is locally bounded.

Assumption 3.2. For ω in Assumption 3.1, ∆T (ω8)T 2 log(T/∆)→p 0.
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Assumption 3.3. For ω in Assumption 3.1, (δ/∆)T (ω8)T 2 log3(T/δ)→p 0.

Assumption 3.4. (δ/∆)T 4
DT →p 0.

Assumption 3.5. (δ/∆2) = O(1).

Assumption 3.2 is similar to Assumption 5.1 in Kim and Park (2017), and pro-

vides a sufficient condition for our primary asymptotics of spot variance (vi) and

integrated variance (xi). On the other hand, the asymptotics of realized variance (yi)

involve three parameters, δ, ∆ and T , and require Assumptions 3.3-3.5 in addition

to Assumption 3.2. The role of Assumption 3.3 is to analyze the asymptotic effect

of the errors (xi − yi) in the OLS estimates. On the other hand, Assumption 3.4 is

a condition to control the effects from the drift part (Dt) in (Pt) so that (Dt) has

no asymptotic impact in the asymptotics of the OLS estimates with (yi). Lastly,

Assumption 3.5 is to exclude less interesting cases where the errors (xi−yi) dominate

the signals (xi) in the OLS estimates with (yi). In particular, if δ/∆2 →∞, then the

error components may have bigger stochastic order than the signals.

Assumptions 3.2-3.4 make it necessary to have ∆→ 0 and δ/∆→ 0. For a fixed

T , a set of necessary and sufficient conditions for Assumptions 3.2-3.4 is ∆→ 0 and

(δ/∆) log3(1/δ)→ 0. Our asymptotics in the paper are derived under the conditions

∆ → 0, δ/∆ → 0 and T → ∞ jointly. For Assumptions 3.2-3.4 to hold, it requires

∆ → 0 and δ/∆ → 0 sufficiently fastly as T → ∞. For instance, Assumption 3.2

holds as long as ∆ = O(T−2−ε) for some ε > 0, if V is bounded with T (ω8) = Op(1).

For example, if daily observations over five years are available, then ∆ = 1/250 and

T−2 = 1/25.3 Our asymptotics in this section hold jointly in δ, ∆ and T under

Assumptions 3.1-3.5, and we do not use sequential asymptotics, requiring δ/∆ → 0,

∆→ 0 and T →∞ sequentially.

To effectively explain our asymptotics, we apply the summation by parts to the

3In our framework, the length ∆ of day is a relative concept, and should be defined with the
length of year simultaneously. If we set ∆ = 1/250, then T = 1 becomes a year. However, if we set
∆ = 1, then T = 250 becomes a year. Similarly, the sampling interval δ of the intraday observations
should be defined with the length ∆ of the day.
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numerator of β̂
(k)
z , and rewrite it as

β̂(k)
z − 1 =

1

2

∑k
j=0

(
(z2
N−j − z2

1+j)− zN(zN−j − z1+j)
)∑N−1

i=k+1(zi−k − zN)2

− 1

2

∑N−1
i=k+1(zi+1 − zi−k)2∑N−1
i=k+1(zi−k − zN)2

. (3.1)

For each term in (3.1), we have the following continuous time approximations when

∆→ 0 and δ/∆→ 0 such that Assumptions 3.1 and 3.2 holds.

Lemma 3.1. Let Assumptions 3.1-3.5 hold.

(a) For k ≥ 0, we have

k∑
j=0

(
(z2
N+j − z2

1+j)− zN(zN+j − z1+j)
)
∼p (1 + k)

(
V 2
T − V 2

0 − V T (VT − V0)
)
,

N−1∑
i=k+1

(zi−k − zN)2∆ ∼p
∫ T

0

(Vt − V T )2dt,

where V T = T−1
∫ T

0
Vtdt, for z = v, x, y.

(b) For k ≥ 0, we have

N−1∑
i=k+1

(zi+1 − zi−k)2 ∼p
N−1∑
i=1

(zi+1 − zi)2 + k
N−1∑
i=1

(vi+1 − vi)2

for z = v, x, y, and

N−1∑
i=1

(zi+1 − zi)2 ∼p


[V ]T , for z = v

(2/3)[V ]T , for z = x

(2/3)[V ]T + (4δ/∆2)
∫ T

0
V 2
t dt, for z = y.

Remark 3.1. (a) The continuous time approximations of the sum of squared incre-

ments (SSI),
∑N−1

i=k+1(zi+1−zi)2, in Lemma 3.1 (b) are depending upon z. In particular,
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we have

N−1∑
i=k+1

(xi+1 − xi)2 <

N−1∑
i=k+1

(vi+1 − vi)2, (3.2)

N−1∑
i=k+1

(xi+1 − xi)2 <

N−1∑
i=k+1

(yi+1 − yi)2 (3.3)

with probability approaching one as δ/∆,∆ → 0 under Assumptions 3.1-3.5. An

intuitive explanation for the inequalities in (3.2) and (3.3) are as follow. We can

naturally expect that the integrated variance (xi) has more smoother sample path

compare to that of the spot variance (vi). As a result, the SSI of (xi) tends to be

smaller than that of (vi), and we have the first inequality in (3.2). On the other

hand, the realized variance (yi) is a noisy measure of the integrated variance (xi),

and the error component in (yi) generates additional variation. Consequently, the

sample path of (yi) becomes more rougher compare to that of (xi), and hence, (3.3)

holds.

(b) Unlike Lemma 3.1 (b), the continuous time approximations in Lemma 3.1 are

identical for all z = v, x, y. The results in Lemma 3.1 (a) are well expected since

|zi − V(i−1)∆| →p 0 for all z as long as δ/∆ and ∆ are sufficiently small relative to T .

(c) It follows from Ito’s lemma and Lemma 3.1 with k = 0 that

N−1∑
i=1

(zi − zN)(zi+1 − zi)

∼p


∫ T

0
(Vt − V T )dVt, for z = v∫ T

0
(Vt − V T )dVt + (1/6)[V ]T , for z = x∫ T

0
(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)

∫ T
0
V 2
t dt, for z = y

(3.4)

as δ/∆,∆→ 0 under Assumptions 3.1-3.5. The result (3.4) for z = v is quite natural

and expectable by the asymptotic negligibility of discretization errors when ∆ → 0.

In a similar argument, one may expect

N−1∑
i=1

(zi − zN)(zi+1 − zi) ∼p
∫ T

0

(Vt − V T )dVt for z = x, y (3.5)
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since sup0≤i≤N |zi− vi| →p 0 as δ/∆,∆→ 0. However, we have (3.4), and the conjec-

ture (3.5) is not true. This is not surprising at all since the convergence of stochastic

process does not necessarily imply the convergence of stochastic integral associated

with the stochastic process. The reader is referred to Kurtz and Protter (1991) for

more detailed discussions about the weak convergence of stochastic integrals.

The primary asymptotics for β̂
(k)
z can be easily obtained by successively applying

Lemma 3.1 and Ito’s lemma to (3.1).

Proposition 3.2. Under Assumptions 3.1-3.5, we have

β̂v − 1 ∼p ∆

∫ T
0

(Vt − V T )dVt∫ T
0

(Vt − V T )2dt
,

β̂x − 1 ∼p ∆

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T∫ T
0

(Vt − V T )2dt
,

β̂y − 1 ∼p ∆

∫ T
0

(Vt − V T )dVt + (1/6)[V ]T − (2δ/∆2)
∫ T

0
V 2
t dt∫ T

0
(Vt − V T )2dt

and

β̂(k)
z − 1 ∼p (β̂z − 1) + k(β̂v − 1).

Remark 3.2. (a) As explained in Remark 3.1 (a), (xi) has more smoother sample

paths than (vi), and hence, we have (3.2). In Proposition 3.2, we have β̂v < β̂x which

implies that (xi) tends to have more persistent sample paths than (vi). This result

is a consequence of (3.2). Moreover, β̂y is downward biased with β̂y < β̂x which is

induced by the errors in (yi).

(b) Note that Assumptions 3.3-3.5 do not necessarily imply δ/∆2 → 0. Therefore,

the speeds of δ → 0 and ∆ → 0 are important in the asymptotic negligibility of the

estimation errors of (yi). In particular, if δ/∆2 → 0 sufficiently quickly, then the errors

of (yi) become asymptotically negligible, and hence, we may have β̂y−1 ∼p β̂x−1. In

Section 5.1, we analyze the asymptotics negligibility of the estimation errors of (yi)

for more general class of estimators, including the OLS and IV estimators, under the

presence of leverage effects.
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3.2. Long Span Asymptotics

The primary asymptotics in Proposition 3.2 do not require T → ∞. In particular,

if T is fixed, then (N/T )(β̂z − 1) = (1/∆)(β̂z − 1) is random for all z = v, x, y,

and is determined by a particular realization of the underlying variance process V .

Under the fixed T asymptotic scheme, the law of motion of V is less important. In

particular, the results in Proposition 3.2 require neither certain moment conditions

nor stationarity. However, the underlying probabilistic structure of V is crucial in

the development of the large T asymptotics.

In our long span asymptotics, we only consider a stationary diffusion V to effec-

tively analyze consequences of fat tails in the volatility regressions. Under Assumption

2.1, the diffusion V is recurrent if and only if s(v) = −∞ and s(v) =∞, where s is the

scale function defined in (2.5). A diffusion which is not recurrent is said to be tran-

sient. Furthermore, the recurrent diffusion V becomes positive recurrent or null recur-

rent, depending upon whether the speed density m in (2.6) is integrable on D or not.

Positive recurrent diffusions have time invariant distributions, and if they are started

from the time invariant distributions they become stationary. The time invariant den-

sity of the positive recurrent diffusion V is given by π(v) = m(v)/
∫
Dm(v)dv. There-

fore, conditions on unconditional moments are characterized by corresponding m-

integrability conditions. For instance, E(f(Vt)) <∞ if and only if f is m-integrable,

since E(f(Vt)) =
∫
D f(v)π(v)dv and π(v) = m(v)/

∫
Dm(v)dv with

∫
Dm(v)dv <∞.

Since we allow fat tails, we consider not only integrable functions but also noninte-

grable functions with respect to the speed density m of V . We will not require any reg-

ularity conditions for m-integrable functions. To effectively analyze m-nonintegrable

functions, however, we need some regularity conditions. Following Kim and Park

(2017), it will be maintained throughout the paper that all m-nonintegrable functions

f are m-regularly varying, i.e., mf is regularly varying on D. For a m-nonintegrable

function f , we say that f is m-strongly nonintegrable if f` is not m-integrable for

any slowly varying function ` on D. On the other hand, we say that f is m-nearly

integrable if f` is m-integrable for some slowly varying function ` on D.

We assume that

Assumption 3.6. (a) s′ is regularly varying or rapidly varying with index c 6= −1,

(b) σ2 is regularly varying, and (c) f = σ2, ι2 is either m-integrable or m-strongly
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nonintegrable.

Assumption 3.6 (a) and (b) appear in Kim and Park (2018), and are mild enough

to include most diffusion processes used in practice. The reader is also referred to

Bingham et al. (1993) for more discussions about the regularly and rapidly varying

functions. In Assumption 3.6 (c), we assume that σ2 and ι2 are m-strongly noninte-

grable as long as they are not m-integrable. This assumption is a technical condition

to simplify our discussions below. Our subsequent theory can also be developed un-

der the m-near integrablility at the cost of more involved analysis (see Kim and Park

(2017, 2018) for the related discussions).

In the following, we let fs = f ◦ s−1 for any function f on D other than m.4

Moreover, for a regularly varying function f on R, we define its limit homogeneous

function f as f(λv)/f(λ)→ f(v) as λ→∞ for all v 6= 0.

We define numerical sequences pT and qT as

pT =

{
T

T 2(msσ
2
s)(T )

if σ2 is m-integrable

if σ2 is m-strongly nonintegrable

qT =

{
T

T 2(msι
2
s)(T )

if ι2 is m-integrable

if ι2 is m-strongly nonintegrable,

and let

P =

{
E(σ2(Vt))∫ τ

0
msσ2

s(Bt)dt

if σ2 is m-integrable

if σ2 is m-strongly nonintegrable

Q =

{
E(V 2

t )∫ τ
0
msι2s(Bt)dt

if ι2 is m-integrable

if ι2 is m-strongly nonintegrable

S =

{
E(V 2

t )− (E(Vt))
2∫ τ

0
msι2s(Bt)dt

if ι2 is m-integrable

if ι2 is m-strongly nonintegrable,

where B is Brownian motion and τ = inf{t
∣∣L(t, 0) > 1/

∫
Dm(v)dv} with Brownian

local time L(·, 0) of B at the origin (i.e., L(t, 0) = limε→0(2ε)−1
∫ t

0
1{|Bs| < ε}ds).

Under Assumption 3.6, both (pT , qT ) and (P,Q, S) are well defined (see Kim and

4In Section 2.1, ms is defined as ms = (m/s′) ◦ s−1 which is the speed density of natural scale
diffusion V s = s(V ) of the underlying diffusion V .
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Park (2017)).

Lemma 3.3. Let Assumption 3.6 hold. Then TpT/qT →∞ and

1

pT
[V ]T →d P,

1

pT

∫ T

0

(Vt − V T )dVt →d −
P

2
,

1

qT

∫ T

0

V 2
t dt→d Q,

1

qT

∫ T

0

(Vt − V T )2dt→d S

as T →∞.

Under the m-integrability of f = ι2, σ2, Lemma 3.3 becomes a standard law of

large numbers of stationary diffusions. However, if f = ι2, σ2 is not m-integrable,

the standard limit theory is not applicable and we have completely different limit

theory. In particular, the limit distribution
∫ τ

0
msfs(Bt)dt is not Gaussian and is

highly nonstandard. Moreover, the normalizing sequence T 2(msfs)(T ) diverges faster

than T since the function msfs becomes a regularly varying function with index

c > −1 as long as f is not m-integrable and Assumption 3.6 holds. The reader is

referred to Kim and Park (2017) for more detailed discussions about the asymptotics

of diffusion functionals.

The long span asymptotics for β̂z follow immediately from Proposition 3.2 with

Lemma 3.3.

Theorem 3.4. Let Assumptions 3.1-3.6 hold. As δ/∆,∆→ 0 and T →∞, we have

β̂v − 1 ∼d −∆
pT
qT

P

2S
, β̂x − 1 ∼d −∆

pT
qT

P

3S
, β̂y − 1 ∼d −∆

pT
qT

P

3S
− δ

∆

2Q

S
.

As shown in Lemma 3.3 that P , Q and S become constants only when both ι2

and σ2 are m-integrable. The relation ∼d in Theorem 3.4 becomes ∼p if P , Q and S

are all constants. On the other hand, if ι2 and σ2 are not m-integrable, then P , Q

and S remain random. In this case, Theorem 3.4 implies that β̂z − 1 is random for

all small ∆.

Remark 3.3. The results in Theorem 3.4 can be applied to a broad class of volatility

processes used in the literature.
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(a) If both σ2 and ι2 are m-integrable, then pT = qT = T and

β̂v − 1 ∼p −∆
E(σ2(Vt))

2V ar(Vt)
, β̂x − 1 ∼p

2

3
(β̂v − 1), β̂y − 1 ∼p (β̂x − 1)− δ

∆

2E(V 2
t )

V ar(Vt)
.

(b) For a stationary Ornstein-Uhlenbeck process V , given as

dVt = κ(µ− Vt)dt+ σdWt,

we have E(σ2(Vt)) = σ2, V ar(Vt) = σ2/(2κ) and E(V 2
t ) = σ2/(2κ) + µ2. Therefore,

β̂v − 1 ∼p −∆κ, β̂x − 1 ∼p −∆
2

3
κ, β̂y − 1 ∼p −∆

2

3
κ− 2

δ

∆

(
1 +

2κµ2

σ2

)
. (3.6)

(c) Let V be a stationary GARCH diffusion (2.7) with σ2 < 2κ so that E(V 2
t ) <

∞. In this case, we have E(σ2(Vt)) = σ2E(V 2
t ), V ar(Vt) = µ2σ2/(2κ − σ2) and

E(V 2
t ) = 2κµ2/(2κ− σ2), and hence, Theorem 3.4 implies

β̂v − 1 ∼p −∆κ, β̂x − 1 ∼p −∆
2

3
κ, β̂y − 1 ∼p −∆

2

3
κ− 4

δ

∆

κ

σ2
. (3.7)

It is interesting to note that the results (3.7) are the same as (2.8) for population

regressions derived by Andersen et al. (2004).

(d) Let V be a stationary GARCH diffusion (2.7) with 2κ < σ2 so that E(V 2
t ) =

E(σ2(Vt)) =∞. In this case, pT = σ2qT and P = Q = S, and therefore, we have

β̂v − 1 ∼p −∆
1

2
σ2, β̂x − 1 ∼p −∆

1

3
σ2, β̂y − 1 ∼p −∆

1

3
σ2 − 2

δ

∆
. (3.8)

Under E(V 2
t ) <∞, as shown in Remark 3.3 (c), the limits of (β̂z − 1)/∆ are mainly

determined by the mean reversion parameter κ in the drift function µ(v). Under

E(V 2
t ) =∞, the limits (β̂z − 1)/∆ are still constant, but they are determined by the

diffusion parameter σ2 in the diffusion function σ2(v).

We also note that GARCH diffusion is a special example that (β̂z − 1)/∆ has a

degenerated constant limit even under E(V 2
t ) =∞, which is induced by the relation-

ship v2 ∝ σ2(v) between the quadratic function v2 and the diffusion function σ2(v).

For any other models which do not satisfy ι2(v) ∝ σ2(v) asymptotically, (β̂z − 1) has
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a random limit, after proper normalization, as long as E(V 2
t ) =∞ or E(σ2(Vt)) =∞.

This is the case for the CEV process considered below.

(e) Let V be a stationary CEV process

dVt = κ(µ− Vt)dt+ σV γ
t dWt.

If κ, µ, σ > 0 and 1 < γ < 3/2, then E(V 2
t ) = ∞ and E(σ2(Vt)) = ∞ since m(v) ∼

v−2γ as v →∞. For the CEV process, we have

pT = σT 2(msι
2γ
s )(T ), qT = T 2(msι

2
s)(T ),

P =

∫ τ

0

msι
2γ
s (Bt)dt, Q = S =

∫ τ

0

msι2s(Bt)dt,

where pT/qT = σι2γ−2
s (T )→∞ as T →∞, since γ > 1 and ιs = s−1 is monotonically

increasing by the recurrence property. Clearly, P 6= S for any γ ∈ (1, 3/2), and hence,

P/S remains random unlike the GARCH diffusion. Therefore, β̂z−1 has random limit

for all sufficiently small ∆.

(f) Our example in Remark 3.3 (d) should be contrasted to the limit theory for the

sample autocorrelations of GARCH(1,1) processes with fat tails obtained in Mikosch

and Starica (2000). Let

Xi = σiZi with σ2
i = α0 + β1σ

2
i−1 + α1X

2
i−1 for i = 1, 2, · · · , N,

where (Zi) is a sequence of i.i.d. symmetric random variables with EZ2
i = 1. Under

some assumptions, which imply that the vector (Xi, σi) is regularly varying with index

p > 0, it is shown that for p ∈ (0, 4) the variance process (σ2
i ) has unbounded variance

and satisfies, for any k ≥ 1,(∑N−k
i=1 X2

iX
2
i+k∑N

i=1X
4
i

− 1,

∑N−k
i=1 σ2

i σ
2
i+k∑N

i=1 σ
4
i

− 1

)
∼d
(

Σ1,X2 − Σ0,X2

Σ0,X2

,
Σ1,σ2 − Σ0,σ2

Σ0,σ2

)
,

where the limit distribution is nondegenerated since the vector (Σm,X2 ,Σm,σ2)m=0,1 is

p/2-stable. This contrasts with our result for a GARCH diffusion with unbounded

variance (see Remark 3.3 (d)), in which (β̂z − 1)/∆ has a constant limit for z = v, x.

We think that the difference between our results and those of Mikosch and Starica
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(2000) is due to the fact that we allow ∆ → 0. We conjecture that the result would

be the same when ∆ is fixed.

4. Instrumental Variable Estimations

In this section we study various IV estimators of β
(k)
z in (2.3). When one has a model

like

yi = α0 + β0xi + ui

where xi has fat tails while ui is i.i.d. with possible fat tails, it is well known that

in general the OLS estimator of β0 is consistent. However, the OLS is not necessar-

ily efficient and its asymptotic distribution could be non-Gaussian. An alternative

method that could lead to more efficient estimators or asymptotically Gaussian ones

is to consider a signed power estimator defined as5

β̃ =

∑
sign(xi) | xi |c (yi − ȳ)∑
sign(xi) | xi |c (xi − x̄)

. (4.1)

The reader is referred to Samorodnitsky et al. (2007) for the asymptotics of OLS and

the signed power estimator.

One can easily prove that this estimator is indeed the empirical counterpart of

the IV estimator defined by

E

[(
1

sign(xi)|xi|c

)
(yi − α0 − β0xi)

]
= 0.

Typically, the constant c is smaller than one in order to reduce the tails of moments

involved in the estimation method. An extreme case is the Cauchy estimator which

corresponds to c = 0, that is the instrument equals the sign of xi.

Consequently, we study in the following subsection IV estimators of β
(k)
z in (2.3)

which have the form

β̃(k)
z =

∑N−1
i=k+1 r(zi−k)(zi+1 − zN)∑N−1
i=k+1 r(zi−k)(zi−k − zN)

,

5If the variable x does not change a sign like a volatility measure, the instrument should be
sign(xi − x̄)|xi − x̄|c.
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where we use a functional transformation r(zi−k) of zi−k as an instrument. We prove

below that the IV estimator, with a proper choice of instrument, is robust to fat tails.

Interestingly, Jean-Marie Dufour used in several studies sign-based methods for in-

ference purposes, especially for exact inference in finite sample. In particular, he used

such approach in Coudin and Dufour (2009, 2017) in order to provide inference about

the slope parameter in a linear regression model without making moment restrictions

on the disturbance errors and therefore allowing for fat tails. The assumption made

in these papers is a median restriction on the errors conditional on the explanatory

variables. In other words, we are using the same approach with a slightly different

framework because we assume that the (conditional) first moment of the errors exists

and equals zero but we do not make assumptions on higher moments.

4.1. IV Estimator β̃
(k)
z with a Current Instrument

Let r be continuously differentiable, and define r1(z) =
∫ z
z0
r(x)dx for some z0 ∈ D.

Then, by Taylor expansion, we have

k∑
j=0

(r1(zN−j)− r1(z1+j)) =
N−1∑
i=k+1

(r1(zi+1)− r1(zi−k))

=
N−1∑
i=k+1

r(zi−k)(zi+1 − zi−k) +
1

2

N−1∑
i=k+1

r′(z∗i−k)(zi+1 − zi−k)2

for (z∗i )
N−1
i=1 such that z∗i ∈ [zi−k, zi+1]. Using the expansion, we may rewrite β̃

(k)
z as

β̃(k)
z − 1 =

∑k
j=0(r1(zN−j)− r1(z1+j))∑N−1
i=k+1 r(zi−k)(zi−k − zN)

− 1

2

∑N−1
i=k+1 r

′(z∗i−k)(zi+1 − zi−k)2∑N−1
i=k+1 r(zi−k)(zi−k − zN)

. (4.2)

As in Lemma 3.1, we may obtain the continuous time approximation for each term

in (4.2). For the approximation, we require

Assumption 4.1. (a) r is three times continuously differentiable on R with r′(z) > 0

for all z ∈ R, and (b) r and its derivatives are all majorized by the function ω in

Assumption 3.1.

The role of Assumption 4.1 is similar to Assumption 3.1, and make it convenient
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to develop the continuous time approximations if combined with the conditions on δ,

∆ and T in Assumptions 3.2-3.5.

Proposition 4.1. Let Assumptions 3.1-3.5 and 4.1 hold.

(a) For k ≥ 0, we have

k∑
j=0

(r1(zN−j)− r1(z1+j)) ∼p (1 + k)(r1(VT )− r1(V0)),

N−1∑
i=k+1

r(zi−k)(zi−k − zN)∆ ∼p
∫ T

0

r(Vt)(Vt − V T )dt

for z = v, x, y.

(b) For k ≥ 0, we have

N−1∑
i=k+1

r′(z∗i−k)(zi+1 − zi−k)2 ∼p
N−1∑
i=1

r′(zi)(zi+1 − zi)2 + k
N−1∑
i=1

r′(vi)(vi+1 − vi)2

for z = v, x, y, and

N−1∑
i=1

r′(zi)(zi+1 − zi)2 ∼p


∫ T

0
r′(Vt)d[V ]t, for z = v

(2/3)
∫ T

0
r′(Vt)d[V ]t, for z = x

(2/3)
∫ T

0
r′(Vt)d[V ]t + (4δ/∆2)

∫ T
0
r′(Vt)V

2
t dt, for z = y

(c) We have

β̃v − 1 ∼p ∆

∫ T
0
r(Vt)dVt∫ T

0
r(Vt)(Vt − V T )dt

,

β̃x − 1 ∼p ∆

∫ T
0
r(Vt)dVt + (1/6)

∫ T
0
r′(Vt)d[V ]t∫ T

0
r(Vt)(Vt − V T )dt

,

β̃y − 1 ∼p ∆

∫ T
0
r(Vt)dVt + (1/6)

∫ T
0
r′(Vt)d[V ]t − (2δ/∆2)

∫ T
0
r′(Vt)V

2
t dt∫ T

0
r(Vt)(Vt − V T )dt

and

β̃(k)
z − 1 ∼p (β̃z − 1) + k(β̃v − 1).

We note that if r(z) = z, then β̃
(k)
z becomes the OLS estimator β̂

(k)
z in Section
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3. Proposition 4.1 (a) and (b) are generalizations of Lemma 3.1 (a) and (b), respec-

tively. Similarly, Proposition 4.1 (c) is a generalization of Proposition 3.2. Moreover,

Remarks 3.1 and 3.2 remain valid. We also note that if r(zi−k − zN) is used as

an instrument instead of r(zi−k), then the results in Proposition 4.1 (c) holds with

r(Vt − V T ) and r′(Vt − V T ) in place of r(Vt) and r′(Vt), respectively.

Now we develop the large T asymptotics of β̃z. To effectively control the fat tails

in V , we impose the following conditions on r.

Assumption 4.2. The function r : D → R satisfies that E[r(Vt)],E[r(Vt)Vt],E[r′(Vt)V
2
t ],

and E[r′(Vt)σ
2(Vt)] are all bounded, and E[r(Vt)Vt]− E[r(Vt)]E[Vt] 6= 0.

Assumption 4.2 provides simple sufficient conditions to ensure that the IV esti-

mator β̃z has a constant limit involving parameters in µ and σ2. An example of r

satisfying Assumption 4.2 is r(v) = arctan(v). Clearly, r is monotonically increas-

ing, bounded and continuously differentiable with r′(v) = 1/(1 + v2). Therefore,

Assumption 4.2 holds if E|Vt| < ∞ and E[r′(Vt)σ
2(Vt)] < ∞. When D = (0,∞) and

r(v) = arctan(v), we have E[r′(Vt)σ
2(Vt)] <∞ as long as σ2(v)/v3 = O(vε) as v →∞

for some ε > 0.

Theorem 4.2. Let Assumptions 3.1-3.5 and 4.1-4.2 hold. If E|Vt| <∞, then

β̃v − 1 ∼p −∆
1

2

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
,

β̃x − 1 ∼p −∆
1

3

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
,

β̃y − 1 ∼p −∆
1

3

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
− δ

∆

2E[r′(Vt)V
2
t ]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
.

As well expected, β̃z − 1 has a well defined constant limit under the moment con-

ditions in Assumption 4.2. For a given parametric diffusion model, we may explicitly

compute the limit of β̃z − 1. As an example, we consider a stationary diffusion V

defined on D = (0,∞) having a linear drift

dVt = κ(µ− Vt)dt+ σ(Vt)dWt (4.3)

with E(Vt) = µ and σ2(v)/v2 = O(1) as v →∞.
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Corollary 4.3. Let r be a bounded function satisfying Assumption 4.2 for a given V

in (4.3). Then we have

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
= 2κ.

Moreover, if V in (4.3) is a GARCH diffusion with σ2(v) = σ2v2, then

E[r′(Vt)V
2
t ]

E[r(Vt)Vt]− E[r(Vt)]E[Vt]
= 2

κ

σ2
.

For a GARCH diffusion, it follows immediately from Theorem 4.2 and Corollary

4.3 that

β̃v − 1 ∼p −∆κ, β̃x − 1 ∼p −∆
2

3
κ, β̃y − 1 ∼p −∆

2

3
κ− 4

δ

∆

κ

σ2
(4.4)

hold regardless of the finiteness of E(V 2
t ). In contrast, the OLS estimates β̂z have

different limits depending upon E(V 2
t ) < ∞ holds or not (see the discussions in

Remark 3.3 (c) and (d)). Moreover, the limits of β̃z in (4.4) are equivalent to those of

the OLS estimates β̂z in (3.6), which are obtained under E(V 2
t ) <∞. Therefore, we

may say that the instrumental variable approach can effectively control the fat tails

as long as r is appropriately chosen.

If the transformation r satisfies some additional integrability conditions, we may

obtain the asymptotic normality of the IV estimator. For the asymptotic normality,

we use the asymptotics of zero functionals (see, e.g., Mandl (1968); van der Vaart

and van Zanten (2005)) so that we have

√
T

(
1

T

∫ T

0

(r′σ2)(Vt)dt− E[r′(Vt)σ
2(Vt)]

)
→d N(0,Σr), (4.5)

provided that the asymptotic variance

Σr = 4

(∫
D
m(v)dv

)[∫
D

(∫ v

v

{
(r′σ2)(v)− E[r′(Vt)σ

2(Vt)]
}
π(u)du

)2

ds(v)

]

is finite, where m, π and s are the speed density, time invariant distribution and scale

function, respectively. Therefore, if r is appropriately chosen such that Σr < ∞, we
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may deduce from Proposition 4.1 (c), Assumption 4.2 and (4.5) that

√
T

(
β̃v−1+

∆

2

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]−E[r(Vt)]E[Vt]

)
→d (2E[r(Vt)Vt]−E[r(Vt)]E[Vt])

−1 N(0,Σr),

√
T

(
β̃x−1+

∆

3

E[r′(Vt)σ
2(Vt)]

E[r(Vt)Vt]−E[r(Vt)]E[Vt]

)
→d (3E[r(Vt)Vt]−E[r(Vt)]E[Vt])

−1 N(0,Σr),

and β̃y − 1 has the same asymptotic distribution as β̃x − 1 if δ/∆2 → 0. On the

other hand, if r does not satisfy Σr < ∞, then (4.5) does not hold, and the limit

distributions of β̃z − 1 are not Gaussian (see Theorem 3.6 of Kim and Park (2017)).

Heuristically, we may consider the Cauchy estimator by using r(z − zN), where

r(z) = sign(z), as an instrument in β̃z. Clearly, r is not differentiable, and hence,

our results Proposition 4.1 and Theorem 4.2 are not directly applicable. By the

standard approximation method with Tanaka’s formula, however, we may obtain the

asymptotics of the Cauchy estimator. Given Proposition 4.1 (c), we conjecture that

β̃v − 1 ∼p ∆

∫ T
0

sign(Vt − V T )dVt∫ T
0
|Vt − V T |dt

,

β̃x − 1 ∼p
(
β̃v − 1

)
+

∆

3

σ2(V T )LV (T, V T )∫ T
0
|Vt − V T |dt

,

β̃y − 1 ∼p
(
β̃x − 1

)
− 4δ

∆

(V T )2LV (T, V T )∫ T
0
|Vt − V T |dt

,

where LV (·, v) is the local time of V at v ∈ D, defined as LV (T, v) = limε→0(2ε)−1
∫ T

0
1{|Vt−

v| < ε}dt. The large T asymptotics then follow immediately from the law of large

numbers, and they are given by

β̃v−1∼p−∆
σ2(µ)π(µ)

E|Vt − µ|
, β̃x−1∼p−∆

2σ2(µ)π(µ)

3E|Vt − µ|
, β̃y−1∼p (β̃x−1)− 4δ

∆

µ2π(µ)

E|Vt − µ|
,

since V T →p E[Vt] = µ, T−1LV (T, V T )→p π(µ), T−1
∫ T

0
|Vt−V T |dt→p E|Vt−µ| and

1

T

∫ T

0

sign(Vt − V T )dVt →p −σ2(µ)π(µ).
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If V is a GARCH diffusion, it can be shown as in Corollary 4.3 that

σ2(µ)π(µ)

E|Vt − µ|
= κ,

µ2π(µ)

E|Vt − µ|
=

κ

σ2
.

Therefore, we conjecture that (4.4) holds even when the Cauchy estimator is used.

We will formally analyze the asymptotics, under a fixed ∆, of the Cauchy estimator

in Section 5.2.

4.2. IV Estimator β̌
(k)
z with a Lagged Instrument

In the GARCH diffusion case, (4.4) means that the proposed IV estimator converges

to the object of interest when one uses the spot variance while one gets a bias estima-

tion when one uses integrated or realized variance. The reason is that the integrated

and realized variances are ARMA(1,1) processes and therefore this IV estimator con-

verges to the first order autocorrelation (when the second moment of these variables

are bounded). As mentionned above, a solution to this problem is to consider the

multiperiod moment restriction (2.11), which in turn corresponds to consider a lagged

instrument in the estimation of β
(k)
z in (2.3). More precisely, in this subsection we

study the estimator β̌
(k)
z defined as

β̌(k)
z =

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zN)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

.

In other words, the IV estimator β̃
(k)
z studied in the previous subsection uses r(zi−k)

as an instrument for (zi−k − zN), whereas β̌
(k)
z employes r(zi−k−1) as an instrument

for the same object (zi−k − zN).

For the asymptotics, we write

β̌(k)
z − 1 =

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zi−k)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

=

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

−
∑N−1

i=k+2 r(zi−k−1)(zi−k − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k − zN)

≡ φ(k)
z − ψ(k)

z . (4.6)
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For the denominator of φ
(k)
z and ψ

(k)
z with a fixed k ≥ 0, we may show that

N−1∑
i=k+2

r(zi−k−1)(zi−k − zN)∆ ∼p
N−1∑
i=k+2

r(zi−k)(zi−k − zN)∆ ∼p
∫ T

0

r(Vt)(Vt − V T )dt

as long as δ/∆ and ∆ are sufficiently small. We then may deduce from Proposition

4.1 with (4.2) that

φ(k)
z ∼p ∆

∑N−1
i=k+2 r(zi−k−1)(zi+1 − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k−1 − zN)∆

∼p β̃(1+k)
z − 1

and

ψ(k)
z ∼p ∆

∑N−1
i=k+2 r(zi−k−1)(zi−k − zi−k−1)∑N−1
i=k+2 r(zi−k−1)(zi−k−1 − zN)∆

∼p β̃(0)
z − 1

as long as δ/∆ and ∆ are sufficiently small. We formally have

Theorem 4.4. Let Assumptions 3.1-3.5 and 4.1 hold. For z = v, x, y, we have

β̌(k)
z − 1 ∼p (β̃(1+k)

z − 1)− (β̃(0)
z − 1) ∼p (1 + k)(β̃v − 1).

Unlike β̂z and β̃z, the limits of β̌z − 1 are given by β̃v − 1 regardless of z = v, x, y.

Consequently, if V is a linear drift diffusion in (4.3), then (β̌z − 1)/∆ →p −κ for all

z = v, x, y, rather than (4.4). Therefore, we may say that the IV estimator β̌z is a

consistent estimator for the mean reversion parameter κ of linear drift diffusions, and

is robust to not only fat tails in V but also errors (vi−xi) and (vi−yi) in, respectively,

the integrated variance and realized variance.

For the linear transformation r(z) = z, we may easily see that β̃z = β̂z. In this

case, the IV estimator β̌z becomes a simple IV estimator with an instrument zi−1 for

(zi − zN), and it follows from Theorem 4.4 that

β̌(k)
z − 1 ∼p (1 + k)(β̂v − 1) (4.7)

for z = v, x, y. If Assumption 3.6 holds in addition to the conditions in Theorem 4.4,

then (4.7) becomes β̌z−1 ∼d −∆(pT/qT )(P/(2S)) for z = v, x, y by Theorem 3.4. On
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the other hand, Assumption 4.2 holds for r(z) = z if and only if E(V 2
t ) and E(σ2(Vt))

are finite. Consequently, when r(z) = z, we have (β̌z − 1)/∆ 6→p −κ for a linear

drift diffusion (4.3) satisfying either E(V 2
t ) = ∞ or E(σ2(Vt)) = ∞. For instance, a

GARCH diffusion satisfies (β̌z − 1)/∆ →p −κ if E(V 2
t ) < ∞ with σ2 < 2κ, whereas

(β̌z − 1)/∆→p −σ2/2 if E(V 2
t ) =∞ with 2κ < σ2.

As a conclusion of this section, let us remark that there is a large literature

considering for autoregressions in discrete time models and allowing for heavy tails.

In particular, Hill (2015) and Hill and Prokhorov (2016) propose a robust generalized

empirical likelihood (GEL) method for estimation and inference of an autoregression

that may have a heavy tailed heteroscedastic error. We expect that the GEL estimator

can also be robust to fat tails in continuous time models. However, it is questionable

whether the GEL estimator can be robust to the non-Markovianity of (xi) and (yi)

in our framework. We leave the asymptotic properties of GEL methods in volatility

regression for future research.

5. Extensions

5.1. Asymptotic Negligibility of Errors in Realized Variance

In Section 4, we analyze the asymptotic behaviors of the IV estimators under the

assumption that each of V and D is independent of W P . In reality, however, it is

widely believed that there exist the leverage effect, which corresponds to a negative

correlation between past returns and future volatility. As an extension of our previ-

ous results, we allow arbitrary dependences among V , D and W P , and analyze the

asymptotic negligibility of the errors in the realized variance.

Assumption 5.1. (a) For ω in Assumption 3.1, (δ/∆2)T (ω6)T log3(T/δ)→p 0, and

(b) ∆T 2
D →p 0.

It can be seen from the primary asymptotics in Proposition 4.1 (c) that the impact

of errors in (yi) may become asymptotically negligible as long as δ/∆2 → 0 sufficiently

quickly. Assumption 5.1 (a) is a sufficient condition for the asymptotic negligibility

of the error, and requires more faster rate of convergence δ → 0 than Assumption

3.3. On the other hand, Assumption 5.1 (b) has a similar role to Assumption 3.4,
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and provides a sufficient condition for the asymptotic negligibility of the drift part

(Dt) in the IV estimation with (yi).

Proposition 5.1. Under Assumptions 3.1-3.2, 4.1, and 5.1,

β̃(k)
y − 1 ∼p β̃(k)

x − 1 and β̌(k)
y − 1 ∼p β̌(k)

x − 1.

Unlike Proposition 4.1 (c), β̃
(k)
y becomes asymptotically equivalent to β̃

(k)
x regard-

less of the presence of leverage effects, especially, when δ/∆2 → 0 sufficiently quickly.

It is also true that, under the conditions in Proposition 5.1, β̂
(k)
y − 1 ∼p β̂(k)

x − 1 since

β̂
(k)
z is a special case of β̃

(k)
z with r(z) = z.

5.2. Fixed ∆ Asymptotics for GARCH Diffusion

In Section 4.2, we obtained general asymptotics of the IV estimator β̌z, which is robust

to fat tails as well as errors in observed variance measures, under, in particular, the

assumption that ∆ → 0. In our asymptotics, the main motivation of introducing

the small ∆ assumption is to effectively handle general variance processes V having

potentially unbounded moments. In practice, however, the volatility measure, (xi) or

(yi), is often computed on a daily basis, and ∆ is commonly fixed to a length of day.

Under the fixed ∆, one may be interested in the quality of our approximation based

on ∆→ 0.

To see the usefulness of our asymptotics under ∆ → 0, we consider a GARCH

diffusion (2.7), and show that the fixed ∆ asymptotics are approximately equivalent

to the asymptotics obtained under ∆→ 0. Specifically, we have

Theorem 5.2. Let V be a GARCH diffusion (2.7) with E|Vt| <∞. If r is bounded,

then β̌z →p exp(−κ∆) as T →∞.

Obviously, exp(−κ∆) = 1−κ∆ +o(∆), and the leading term 1−κ∆ is equivalent

to the limit of β̌z obtained under ∆ → 0 in Theorem 4.4. We also note again that

our asymptotics of β̂z in Section 3 provide the same results as those derived by

Andersen et al. (2004) when the required moments are satisfied. Therefore, we may

conclude that our asymptotics, obtained under ∆ → 0, provide a useful asymptotic

approximation at least for some popular models.
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We heuristically consider the Cauchy estimator in Section 4.1. Our general theory

under ∆→ 0 is not directly applicable to the Cauchy estimator since the instrument

r(z − zN) is involving nondiffrentiable function r(z) = sign(z). Under a fixed ∆,

however, we do not need the differentiability of the transformation r as long as we

have proper conditional moments such as (2.10) and (2.11) for GARCH diffusions. In

general, the required conditional moments are not available for most diffusion models

having fat tails. This is another reason why our asymptotic approximation obtained

under small ∆ may be useful.

Given the asymptotic assumption of ∆ → 0 as well as continuity of the sample

path of V , two consecutive measures zi+1 and zi are supposed to be very close for

z = v, x, y. Consequently, we always have unit roots in z = v, x, y, and β̂z, β̃z, β̌z →p 1

as long as ∆→ 0 sufficiently quickly as derived in the previous sections. Indeed, there

are many evidences supporting the unit root like behavior in volatility regressions. In

the empirical studies in Hansen and Lunde (2014), for instance, volatility regressions

at daily frequency are considered for 29 assets in the Dow Jones industrial average.

The range of parameter estimates for the coefficient of the first order autoregression

with realized variances are [0.611, 0.887] and [0.895, 1.037], respectively, for the OLS

and IV estimates. They also find that the volatility processes are highly persistent,

and they fail to reject the unit root hypothesis at the 1% level for some volatility

processes.

6. Simulations

In this section, we study by simulation the behavior of the Hill tail index estima-

tor as well as the OLS and some IV estimators. For our simulations, we use the

GARCH diffusion (2.7) with three sets of parameters. The first one is (κ0, µ0, σ
2
0) =

(0.0350, 0.6360, 0.0207) which implies that the corresponding Vt has a finite second

moment since ψ0 = σ2
0/(2κ0) = 0.296 < 1. This set of parameters was used by An-

dersen and Bollerslev (1998) as implied from the (weak) daily GARCH(1,1) model

estimates for the DM/dollar from 1987 through 1992 using the temporal aggrega-

tion results of Drost and Nijman (1993) and Drost and Werker (1996); the same

parameters were used by Andersen et al. (2004).

To consider a process with an unbounded variance of Vt, we consider two other sets
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of parameters by keeping the same κ0 and µ0, while we multiply σ2
0 by 4 and 16, corre-

sponding to ψ0 = 1.183 and ψ0 = 4.732, that is (κ0, µ0, σ
2
0) = (0.0350, 0.6360, 0.0828)

and (0.0350, 0.6360, 0.3312). Clearly, the third model has thicker tails than the second

one.

The simulation samples are generated by the Euler discretization at 10 seconds

for T = 250, 500, 1000 days corresponding to 1, 2 and 4 years. We assume that the

market is open 24 hours. For each day (∆ = 1), we set the daily spot variance as

the spot variance at the end of the day, while we compute the integrated variance

by the numerical integration of the simulated spot variance process at 10 seconds.

As for the realized variance, we analyze the frequency effects by considering three

different frequencies: 10 minutes (δ/∆ = 1/144), 5 minutes (δ/∆ = 1/288) and 1

minute (δ/∆ = 1/1440). For each sample, we get rid of the first five days to reduce

the effect of the initial value, and we do 10,000 replications.

6.1. Tail Index

We start by studying the properties of the Hill estimator by estimating the tail index

of the returns, spot and integrated volatility of the GARCH diffusion model. In an

important contribution, Nelson (1990) proved that when the length of the returns

goes to zero, the returns follows (up to a scaling factor) a Student distribution with

degree of freedom ν0 = 2 + 4κ0/σ
2
0 = 2 + 2/ψ0. Consequently, the tail index of the

return is ν0 which equals 8.75 for Model 1, 3.69 for Model 2 and 2.43 for Model 3.

Likewise, the stationary distribution of any stationary scalar diffusion process is

well known and proportional to the speed density function m(·) defined in (2.6). One

can easily show that m(v) ∼ v−2−1/ψ0 when v → ∞, implying that the tail index

of the spot variance Vt equals 1 + 1/ψ0. Consequently, the tail index of the returns

equals the double of the spot variance’s tail index when the length of the returns goes

to zero.

Unfortunately we do not know the tail indexes of the integrated and realized

variances. There is no general result connecting the tail of a process with the tail of

temporal aggregation version of it.

Figures 4 and 5 depict the average estimator of the tail index of the returns, the

spot variance, the integrated variance and the three realized volatility measures of the
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three models. The averages are computed over 10,000 replications of samples with

1,000 observations each. The first panel of Figure 4 depicts the tail index of daily

returns. If the Nelson’s approximation is good, the true tail index should be 8.75 for

Model 1, 3.69 for Model 2, and 2.43 for Model 3. The simulations suggest that there

is negative bias in the Hill estimator, which is quite small for low values of k (we do

not use the subscript n) and increases when k increases. However the order of the

tails is coherent across models. The bias is maybe genuine, or because the Nelson’s

approximation is not good for our sample frequency. The second panel of Figure 4

depicts the tail index of the spot variance. The tail index should be 4.38 for Model 1,

1.85 for Model 2, and 1.22 for Model 3. There is clearly a positive bias when k is small

and then the tail Hill estimator looks good when k increases. Again, the order of the

tails is coherent across models with the right magnitudes. The third panel of Figure

4 depicts the tail index of the integrated variance for which we do not know the true

tail index. The plots are quite similar to those of the spot variance. Figure 5 depicts

the tail index of the three realized volatility measures for which we do not know the

true index. The graphs are close to those of the integrated variance, especial for the

third panel that corresponds to realized variance computed with 1-minute returns.

6.2. OLS and IV Estimations

We now turn to study of the empirical distributions of the OLS and IV estimators.

We keep the three models of the GARCH diffusion (2.7), with three sample sizes,

250, 500, and 1,000.

We start by considering the regression

vi+1 = α + βvi + ui+1, with vi = Vi∆.

We will focus on the slope parameter β. It is well known that β equals exp(−κ∆)

when the spot variance has a finite second moment. However, we proved in (2.10) that

the same result holds when Vt is stationary and has a finite first moment. Therefore,

the slope of interest is exp(−κ∆) for the three models considered in this section.

When ∆ is fixed and the second moment of Vt is bounded, the OLS estimator of

β is consistent. Characterizing the fixed ∆ asymptotics of the OLS is difficult when

the second moment of Vt is not finite. However, we may deduce from Theorem 3.4
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(see also Remark 3.3 (d)) that the OLS is inconsistent. However, the IV estimator is

consistent by Theorem 5.2, when the Cauchy estimator is used.

Figure 6 depicts the empirical distribution of the OLS and IV estimators of the

slope coefficient. The first panel deals with Model 1 for which the second moment

is bounded, while the second and third panels deal respectively with Models 2 and

3 for which the second moment of Vt is unbounded. The figures are coherent with

the theory. For Model 1 (top panel), both OLS and IV estimators look consistent

with better properties when the sample size increases. However, the OLS estimator

presents a bias and looks inconsistent, as expected by our theory, for Model 2 (second

panel) and especially Model 3 (third panel) which present very fat tails. In contrast,

the Cauchy estimator looks consistent for the two models, even though there is some

bias that decreases when the sample sizes increases.

In practice, the spot variance process is not observed. It is therefore important to

focus on feasible methods based on the observed realized variance processes. Accord-

ingly, we consider the multi-period moment restriction (2.11) which is always valid for

the spot and integrated variances, and is valid for the realized variance when the drift

Dt is zero as in our simulations.6 Consequently, we consider the moment condition

E[r(zi−2)(zi − α− βzi−1)] = 0,

where zi is either the spot, the integrated or one of the three realized variance mea-

sures. We consider two IV estimators: the first one is r(zi−2) = zi−2 while the second

one is the sign of zi−2 minus its empirical mean, that is the Cauchy estimator. For the

second and third models, the first IV estimator with r(zi−2) = zi−2 does not fulfill the

restriction E[| r(zi−2)(zi − α − βzi−1) |] < ∞, and hence, we may deduce from (3.8)

and (4.7) that it is not consistent for exp(−κ∆), even when ∆ → 0. However, the

corresponding estimator is consistent for the first model. The second IV estimator is

the Cauchy one and leads to a consistent estimator for the three models.

Figures 7-11 depict respectively the empirical distribution of the slope’s estimator

for the five volatility measures listed above. Each figure contains three panels corre-

sponding to the three models. For all figures, the Cauchy instrument based estimator

6The presence of a drift will introduce a small bias that will disappear when the length of the
intra-day returns δ goes to zero.
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looks consistent whether E(V 2
t ) < ∞ (first panel of each figure) or not (second and

their panels of each figure), which is coherent with the theory. Importantly, the esti-

mator based on observed volatility measures is consistent, which is practically more

relevant. As expected, the IV estimator with r(zi−2) = zi−2 looks consistent only for

Model 1 (first panel), but it looks inconsistent for Models 2 and 3, with a larger bias

for Model 3.

7. Conclusion

Fat tails are a well-known empirical fact of financial returns. Surprisingly, the real-

ized volatility literature ignored this fact. After proving empirically that the second

moment of several realized variance measures are probably unbounded, we studied

theoretically the limiting behavior of the OLS estimator of simple autoregressions of

spot, integrated and realized variances. We proved that when the second moment of

the spot variance is unbounded, the OLS estimators converge to random variables.

Our theory is also valid when the second moment of the spot variance is bounded.

In this case, the OLS estimates converge to finite and deterministic quantities which

are the same ones derived by Andersen et al. (2004) in population regressions. Our

theoretical results are based on asymptotic approximations. Both the simulations

and the comparison with the results in Andersen et al. (2004) when the spot variance

has a finite second moment corroborate the good quality of our approach.

In order to derive more positive results, we considered a GARCH diffusion process

with unbounded second moment for the variance process and then we provided a

consistent estimation method based on instrumental variable approach where the

instrument is the sign of the lagged value of the variable of interest.

There is an important question that should be addressed. It concerns the fore-

cast that one should compute under fat tails in a non-parametric setting. Various

approaches could be considered like different loss functions or nonlinear transforms

of the variable of interest. This question is currently under investigation.
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Appendix

Throughout, we let f and σ2 be twice continuously differentiable functions. Further-

more, we assume that for g = ι, f, f ′, f ′′, µ, σ2, σ2′ , σ2′′ , there is a locally bounded

function ω such that |g(v)| ≤ ω(v) for all v ∈ D.

A. Useful Lemmas for Integrated Variance

Lemma A.1. Let M be a continuous local martingale with its quadratic variation

[M ] satisfying

sup
0≤t,s≤T

sup
|t−s|≤δ

|[M ]t − [M ]s| = Op (δξ(δ, T ))

for some sequence (ξ(δ, T )) of positive numbers. As δξ(δ, T )→p 0, we have

sup
0≤t,s≤T

sup
|t−s|≤δ

|Mt −Ms| = Op

(√
δξ(δ, T ) log(T/δ)

)
.

Proof of Lemma A.1. The stated result follows immediately from Theorem 1 and

Corollary 1 of Kanaya et al. (2017).

Lemma A.2. If ∆1/2T (ω2)
√

log(T/∆)→p 0, then

sup
1≤i≤N

|f(xi)− f(vi−i)| = Op (∆T (f ′µ)) +Op

(
∆1/2T (f ′σ)

√
log(T/∆)

)
= op (1) .

Proof of Lemma A.2. Since V has a continuous sample path, we may deduce from

the mean value theorem that

sup
1≤i≤N

|f(xi)− f(vi−i)| = sup
1≤i≤N

∣∣∣∣f ′(Vki) 1

∆

∫ i∆

(i−1)∆

(Vt − V(i−1)∆)dt

∣∣∣∣
≤ T (f ′) sup

1≤i≤N

∣∣∣∣ 1

∆

∫ i∆

(i−1)∆

(Vt − V(i−1)∆)dt

∣∣∣∣ (A.1)

for some ki ∈ [(i− 1)∆, i∆]. Moreover, it follows from Lemma A.1 that

sup
0≤t,s≤T

sup
|t−s|≤∆

|Vt − Vs| = Op (∆T (µ)) +Op

(
∆1/2T (σ)

√
log(T/∆)

)
, (A.2)
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and hence,

sup
1≤i≤N

∣∣∣∣∫ i∆

(i−1)∆

(Vt − V(i−1)∆)dt

∣∣∣∣ = Op

(
∆2T (µ)

)
+Op

(
∆3/2T (σ)

√
log(T/∆)

)
. (A.3)

The stated result follows immediately from (A.1) and (A.3).

Lemma A.3. Under the condition in Lemma A.2, we have

∆
N∑
i=1

f(xi) =

∫ T

0

f(Vt)dt+Op

(
∆1/2T (ω2)T

√
log(T/∆)

)
.

Proof of Lemma A.3. Due to Lemma A.2, we have

∆
N∑
i=1

(f(xi)− f(vi−1)) = Op (∆T (f ′µ)T ) +Op

(
∆1/2T (f ′σ)T

√
log(T/∆)

)
. (A.4)

Moreover, by Lemma B1 of Kim and Park (2017), we have

∆
N∑
i=1

f (vi−1) =

∫ T

0

f(Vt)dt+Op (∆T (f ′µ)T ) +Op (∆T (f ′′σ)T )

+Op

(
∆T (f ′σ)T 1/2

)
, (A.5)

from which, together with (A.4), the stated result follows immediately.

Lemma A.4. If ∆T (ω2)T →p 0, then

1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2(f(Vs)− f(Vi∆))ds = op (1) .

Proof of Lemma A.4. Due to Ito’s lemma, we have

1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2(f(Vs)− f(Vi∆))ds = AT +BT , (A.6)
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where

AT =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2

(∫ s

i∆

(f ′µ+ f ′′σ2/2)(Vt)dt

)
ds,

BT =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)2

(∫ s

i∆

(f ′σ)(Vt)dWt

)
ds.

For AT , it is easy to see that

AT = Op (∆T (f ′µ)T ) +Op

(
∆T (f ′′σ2)T

)
. (A.7)

As for BT , we have

BT =
1

∆2

N∑
i=1

∫ (i+1)∆

i∆

(f ′σ)(Vt)

(∫ (i+1)∆

t

((i+ 1)∆− s)2ds

)
dWt

= Op

(
∆T (f ′σ)T 1/2

)
, (A.8)

where the first line is due to the changing the order of integrals, and the second line

can be deduced from the proof of Lemma B1 in Kim and Park (2017). The stated

result follows immediately from (A.6)-(A.8).

Lemma A.5. If ∆1/2T (ω5/2)T
√

log(T/∆)→p 0, we have

N∑
i=1

f(vi−1)(xi+1 − xi)2 =
2

3

∫ T

0

f(Vt)σ
2(Vt)dt+ op (1) .

Proof of Lemma A.5. We write

N∑
i=1

f(vi−1)(xi+1 − xi)2 =
1

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt+

∫ i∆

(i−1)∆

(Vi∆ − Vt)dt

)2

= AT +BT +RT , (A.9)
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where

AT =
1

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)2

,

BT =
1

∆2

N∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

(Vi∆ − Vt)dt
)2

,

RT =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)(∫ i∆

(i−1)∆

(Vi∆ − Vt)dt
)
.

Due to (A.9), the stated result follows immediately if we show

AT , BT =
1

3

∫ T

0

f(Vt)σ
2(Vt)dt+Op

(
∆1/2T (ω5/2)T

√
log(T/∆)

)
, (A.10)

RT = Op

(
∆1/2T (ω5/2)T

√
log(T/∆)

)
. (A.11)

Proof of (A.10). We will only prove the result for AT , since the proof of the

result for BT is entirely analogous. For the proof, we write AT as

AT =
1

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt+

∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)2

= A1,T + A2,T + A3,T , (A.12)

where

A1,T =
1

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)2

,

A2,T =
1

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)2

,

A3,T =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)
.
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For A1,T , we have

|A1,T | ≤ sup
0≤t≤T

|(fµ2)(Vt)|∆T = Op

(
∆T (fµ2)T

)
. (A.13)

On the other hand, it follows from Lemma A.1 that A3,T satisfies

|A3,T | ≤ 2T (fµ)T sup
0≤t,s≤T

sup
|t−s|≤∆

∣∣∣∣∫ t

s

σ(Vu)dWu

∣∣∣∣
= Op

(
∆1/2T (fµσ)T

√
log(T/∆)

)
. (A.14)

As for A2,T , we define a continuous martingale M as

Mt =

j−1∑
i=1

∫ (i+1)∆

i∆

((i+ 1)∆− s)σ(Vs)dWs +

∫ t

j∆

((j + 1)∆− s)σ(Vs)dWs

for t ∈ [j∆, (j + 1)∆), j = 1, 2, · · · , N − 1, so that we have

A2,T =
1

∆2

N∑
i=1

f(V(i−1)∆)
(
M(i+1)∆ −Mi∆

)2

=
1

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

d[M ]t +
2

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

(Mt −Mi∆)dMt,

(A.15)

where the last line follows from Ito’s lemma.

For the second term of (A.15), we can deduced from Lemma B5 of Kim and Park

(2017) that

2

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

(Mt −Mi∆)dMt

=
2

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

(∫ t

i∆

((i+ 1)∆− s)σ(Vs)dWs

)
((i+ 1)∆)− t)σ(Vt)dWt

= Op

(
∆1/2T (fσ2)T 1/2

√
log(T/∆)

)
. (A.16)
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For the first term of (A.15), we have

1

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

d[M ]t =
1

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

((i+ 1)∆− s)2σ2(Vs)ds

=
1

∆2

N∑
i=1

(fσ2)(V(i−1)∆)

∫ (i+1)∆

i∆

((i+ 1)∆− s)2ds+ ST

=
1

3

N∑
i=1

(fσ2)(V(i−1)∆)∆ + ST , (A.17)

where

ST =
1

∆2

N∑
i=1

f(V(i−1)∆)

∫ (i+1)∆

i∆

((i+ 1)∆− s)2(σ2(Vs)− σ2(V(i−1)∆))ds

= Op

(
∆T (fσ2′µ)T

)
+Op

(
∆T (fσ2′′σ2)T

)
+Op

(
∆T (fσ2′σ)T 1/2

)
(A.18)

by Lemma A.4. Moreover, it follows from (A.5) that

N∑
i=1

(fσ2)(V(i−1)∆)∆ =

∫ T

0

(fσ2)(Vt)dt+Op

(
∆T ((fσ2)′µ)T

)
+Op

(
∆T ((fσ2)′′σ2)T

)
+Op

(
∆T ((fσ2)′σ)T 1/2

)
,

from which, toghether with (A.16)-(A.18) and the conditions in the lemma, we have

A2,T =
1

3

∫ T

0

(fσ2)(Vt)dt+Op

(
∆1/2T (ω2)T 1/2

√
log(T/∆)

)
. (A.19)

Therefore, we can obtain (A.10) by applying (A.13), (A.14) and (A.19) to (A.12).

Proof of (A.11). We write

RT = R1,T +R2,T +R3,T +R4,T , (A.20)
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where

R1,T =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

µ(Vs)dsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)
,

R2,T =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

σ(Vs)dWsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

µ(Vs)dsdt

)
,

R3,T =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

µ(Vs)dsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)
,

R4,T =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

∫ t

(i−1)∆

σ(Vs)dWsdt

)(∫ (i+1)∆

i∆

∫ t

i∆

σ(Vs)dWsdt

)
.

We can easily show that

R1,T = Op

(
∆T (fµ2)T

)
. (A.21)

Similarly as in (A.14), we have

R2,T , R3,T = Op

(
∆1/2T (fµσ)T

√
log(T/∆)

)
. (A.22)

By changing the order of integrals, we rewrite R4,T as

R4,T =
2

∆2

N∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)(∫ (i+1)∆

i∆

((i+ 1)∆− s)σ(Vs)dWs

)

and define a continuous martingale M as

Mt =
2

∆2

j−1∑
i=1

f(V(i−1)∆)

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)(∫ (i+1)∆

i∆

((i+ 1)∆− s)σ(Vs)dWs

)

+
2

∆2
f(V(j−1)∆)

(∫ j∆

(j−1)∆

(j∆− s)σ(Vs)dWs

)(∫ t

j∆

((j + 1)∆− s)σ(Vs)dWs

)
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for t ∈ [j∆, (j+1)∆), j = 1, 2, · · · , N −1, so that we have MT = R4,T . Then we have

[M ]T =
4

∆4

N∑
i=1

f 2(V(i−1)∆)

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)2
(∫ (i+1)∆

i∆

((i+ 1)∆− s)2σ2(Vs)ds

)
= Op

(
∆T (f 2σ4)T log(T/∆)

)
since

sup
1≤i≤N

(∫ (i+1)∆

i∆

((i+ 1)∆− s)2σ2(Vs)ds

)
= Op

(
∆3T (σ2)

)
and

N∑
i=1

(∫ i∆

(i−1)∆

(i∆− s)σ(Vs)dWs

)2

= Op

(
∆2T (σ2)T log(T/∆)

)
,

similarly as in (A.14). Therefore, we have R4,T = Op

(
∆1/2T (fσ2)T 1/2

√
log(T/∆)

)
,

from which, together with (A.20)-(A.22), we have (A.11).

Lemma A.6. Under the condition in Lemma A.5, we have

N∑
i=k+1

f(Vi−k−1)(Vi∆ − V(i−1)∆)(V(i−k)∆ − V(i−k−1)∆) = op (1)

for any positive integer k ≥ 1.

Proof of Lemma A.6. We have

N∑
i=k+1

f(Vi−k−1)(Vi∆ − V(i−1)∆)(V(i−k)∆ − V(i−k−1)∆) = AT +BT + CT +DT , (A.23)
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where

AT =
N∑

i=j+1

f(Vi−k−1)

(∫ i∆

(i−1)∆

µ(Vs)ds

)(∫ (i−k)∆

(i−k−1)∆

µ(Vs)ds

)
,

BT =
N∑

i=j+1

f(Vi−k−1)

(∫ i∆

(i−1)∆

σ(Vs)dWs

)(∫ (i−k)∆

(i−k−1)∆

µ(Vs)ds

)
,

CT =
N∑

i=j+1

f(Vi−k−1)

(∫ i∆

(i−1)∆

µ(Vs)ds

)(∫ (i−k)∆

(i−k−1)∆

σ(Vs)dWs

)
,

DT =
N∑

i=j+1

f(Vi−k−1)

(∫ i∆

(i−1)∆

σ(Vs)dWs

)(∫ (i−k)∆

(i−k−1)∆

σ(Vs)dWs

)
.

For AT , we have

AT = Op

(
∆T (fµ2)T

)
. (A.24)

Moreover, we have

BT , CT = Op

(
∆1/2T (fµσ)T

√
log(T/∆)

)
. (A.25)

similarly as in (A.14).

As for DT , we may show that

DT = Op

(
∆1/2T (fσ2)T 1/2

√
log(T/∆)

)
(A.26)

similarly as in the proof for R4,T in (A.20). The stated result follows immediately

from (A.23)-(A.26).

Lemma A.7. Let the condition in Lemma A.5 hold. Then for k ≥ 0 we have

N∑
i=k+1

f(vi−k−1)(xi+1 − xi−k)2 =

(
2

3
+ k

)∫ T

0

f(Vt)σ
2(Vt)dt+ op (1) .
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Proof of Lemma A.7. Since we have

xi+1 − xi−k =

∫ (i+1)∆

i∆

(Vt − Vi∆)dt+

∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)dt+ ∆(Vi∆ − V(i−k)∆),

we may write

N∑
i=k+1

f(vi−k−1)(xi+1 − xi−k)2 = AT +BT + CT +R1,T +R2,T +R3,T , (A.27)

where

AT =
1

∆2

N∑
i=k+1

f(V(i−k−1)∆)

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)2

,

BT =
1

∆2

N∑
i=k+1

f(V(i−k−1)∆)

(∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)dt

)2

,

CT =
N∑

i=k+1

f(V(i−k−1)∆)(Vi∆ − V(i−k)∆)2,

R1,T =
2

∆2

N∑
i=k+1

f(V(i−k−1)∆)

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)(∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)

)
,

R2,T =
2

∆

N∑
i=k+1

f(V(i−k−1)∆)

(∫ (i+1)∆

i∆

(Vt − Vi∆)dt

)
(Vi∆ − V(i−k)∆),

R3,T =
2

∆

N∑
i=k+1

f(V(i−k−1)∆)(Vi∆ − V(i−k)∆)

(∫ (i−k)∆

(i−k−1)∆

(V(i−k)∆ − Vt)

)
.

Similarly as in the proofs of (A.10) and (A.11) in Lemma A.5, we may show that

AT , BT =
1

3

∫ T

0

(fσ2)(Vt)dt+Op

(
∆1/2T (ω5/2)T

√
log(T/∆)

)
(A.28)

R1,T , R2,T , R3,T = Op

(
∆1/2T (ω5/2)T

√
log(T/∆)

)
. (A.29)
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As for CT , we have

CT =
k−1∑
j=0

N∑
i=k+1

f(Vi−k−1)(V(i−j)∆ − V(i−j−1)∆)2 + op (1)

= k

∫ T

0

(fσ2)(Vt)dt+ op (1) , (A.30)

where the first equality is due to Lemma A.6, and the last equality can be deduced

from the proof of Lemma A.5 with Lemma A11 of Kim and Park (2018). The stated

result is then follows from (A.27)-(A.30).

Lemma A.8. Let the condition in Lemma A.5 hold. Then for k ≥ 0 we have

N∑
i=k+1

f(x∗i−k)(xi+1 − xi−k)2 =
N∑

i=k+1

f(vi−k−1)(xi+1 − xi−k)2 + op(1).

Proof of Lemma A.8. We have

N∑
i=k+1

|f(x∗i−k)− f(vi−k−1)|(xi+1 − xi−k)2 ≤
N∑

i=k+1

(xi+1 − xi−k)2

(
sup

1≤i≤N−k
|f(x∗i )− f(vi−1)|

)

≤
(

(2/3 + k)

∫ T

0

σ2(Vt)dt

)(
sup

0≤s,t≤T
sup

|s−t|≤k∆

|f(Vs)− f(Vt)|

)
(1 + op(1))

= Op(T (σ2)T )×
(
Op

(
∆T (f ′µ+ f ′′σ2/2)

)
+Op

(
∆1/2T (f ′σ)

√
log(T/∆)

))
= op(1),

where the second line follows from Lemma A.7 with the construction of (x∗i ), the

third line can be deduced from (A.2) with Ito’s lemma, the last line follows from the

condition in this lemma.
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B. Useful Lemmas for Realized Variance

In the following, we write ei = yi − xi and ei = eai + 2ebi + eci with

eai =
1

∆

n∑
j=1

(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

Dtdt

)2

,

ebi =
1

∆

n∑
j=1

(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

Dtdt

)(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

V
1/2
t dW P

t

)
,

eci =
1

∆

n∑
j=1

(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

V
1/2
t dW P

t

)2

− 1

∆

∫ i∆

(i−1)∆

Vtdt

=
2

∆

n∑
j=1

∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

(∫ t

(i−1)∆+(j−1)δ

V 1/2
s dW P

s

)
V

1/2
t dW P

t ,

where, in particular, the last equality follows from Ito’s lemma.

B.1. With Leverage Effects

In this section, we assume that V , D and W P are arbitrarily dependent.

Lemma B.1. If (a) (δ/∆)T (ω2) log(T/δ)→p 0 and (b) ∆T 2
D →p 0, then

sup
1≤i≤N

|yi − xi| = Op

(
(δ/∆)1/2T (ι) log(T/δ)

)
.

Proof of Lemma B.1. We have

sup
1≤i≤N

|eai | = Op

(
δT 2

D

)
and sup

1≤i≤N
|ebi | = Op

(√
δT 2

DT (ι) log(T/δ)

)
(B.1)

since, in particular, we have

sup
δ≤t≤T

∣∣∣∣∫ t

t−δ
V 1/2
u dW P

u

∣∣∣∣ = Op

(√
δT (ι) log(T/δ)

)
(B.2)
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by Lemma A.1 with the condition (a). It follows that

sup
1≤i≤N

|yi − xi| ≤ sup
1≤i≤N

|eai |+ sup
1≤i≤N

|ebi |+ sup
1≤i≤N

|eci |

= sup
1≤i≤N

|eci |+ op

(√
(δ/∆)T (ι) log(T/δ)

)
(B.3)

due to the conditions (a) and (b).

As for sup1≤i≤N |eci | in (B.3), we define a continuous martingale M as M0 = 0 and

Mt −M(k−1)δ =
2

∆

∫ t

(k−1)δ

(∫ s

(k−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s (B.4)

for t ∈ [(k−1)δ, kδ), k = 1, 2, · · · , nN so that Mi∆−M(i−1)∆ = eci for i = 1, 2, · · · , N .

The quadratic variation [M ] of M satisfies

sup
(i−1)∆≤t≤i∆

|[M ]t − [M ](i−1)∆| =
4

∆2

n∑
j=1

∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

(∫ t

(i−1)∆+(j−1)δ

V 1/2
s dW P

s

)2

Vtdt

= Op

(
(δ/∆)T (ι2) log(T/δ)

)
uniformly in 1 ≤ i ≤ N , due to (B.2). We then use Lemma A.1 with the condition

(a) so that we have

sup
1≤i≤N

|eci | ≤ sup
1≤i≤N

sup
(i−1)∆≤t≤i∆

|Mt −M(i−1)∆| = Op

(√
(δ/∆)T (ι2) log2(T/δ)

)
(B.5)

from which, jointly with (B.3), we have the stated result.

Lemma B.2. Under the conditions in Lemma B.1, we have

sup
1≤i≤N

|f(yi)− f(xi)| = Op

(
(δ/∆)1/2T (ω2) log(T/δ)

)
,

∆
N∑
i=1

f(yi) = ∆
N∑
i=1

f(xi) +Op

(
(δ/∆)1/2T (ω2)T log(T/δ)

)
.
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Proof of Lemma B.2. Since f is differentiable, we have

sup
1≤i≤N

|f(yi)− f(xi)| ≤ T (f ′) sup
1≤i≤N

|yi − xi| = Op

(
(δ/∆)1/2T (f ′ι) log(T/δ)

)
,

from which we have the stated results.

Lemma B.3. Under the conditions in Lemma B.1, we have

(a)
N∑
i=1

f(vi−1)(ei)
2,

N−1∑
i=1

f(vi−1)eiei+1 = Op

(
(δ/∆2)T (ω3)T log2(T/δ)

)
,

(b)
N−1∑
i=k+1

f(vi−1)(xi+1 − xi)(ei+1 − ei) = Op

(
(δ1/2/∆)T (ω3)T log3/2(T/δ)

)
.

Proof of Lemma B.3. It follows from Lemma B.1 that

N∑
i=1

f(vi−1)(ei)
2,

N−1∑
i=1

f(vi−1) |eiei+1| ≤
T

∆
sup

1≤i≤N
(ei)

2 sup
1≤i≤N

|f(vi−1)|

= Op

(
(δ/∆2)T (fι2)T log2(T/δ)

)
and

N−1∑
i=k+1

f(vi−1)(xi+1 − xi)(ei+1 − ei) ≤ 2
T

∆
sup

1≤i≤N
|ei| sup

∆≤t≤T
|Vt − Vt−∆| sup

1≤i≤N
|f(vi−1)|

= Op

(√
(δ/∆2)T (f 2ω4)T 2 log3(T/δ)

)
by (A.2).

Lemma B.4. Let the conditions in Lemma B.1 hold. If (δ/∆2)T (ω6)T log3(T/δ)→p

0, then for any k ≥ 0, we have

N−1∑
i=k+1

f(vi−k−1)(yi+1 − yi−k)2 =
N−1∑
i=k+1

f(vi−k−1)(xi+1 − xi−k)2 + op(T
1/2).

Proof of Lemma B.4. This follows immediately from Lemma B.3.
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Lemma B.5. Let the conditions in Lemmas A.2 and B.1 hold. Then, for any k ≥ 0,

we have

N−1∑
i=k+1

|f(y∗i−k)− f(vi−k−1)|(yi+1 − yi−k)2

=
N−1∑
i=k+1

(yi+1 − yi−k)2 ×
(
Op

(
(δ/∆)1/2T (ω2) log(T/δ)

)
+Op

(
∆1/2T (ω2)

√
log(T/∆)

))
.

Proof of Lemma B.5. We have

N−1∑
i=k+1

|f(y∗i−k)− f(vi−k−1)|(yi+1 − yi−k)2 ≤
N−1∑
i=k+1

(yi+1 − yi−k)2 (AN +BN) ,

where AN = sup1≤i≤N−k |f(y∗i )− f(yi)|, and

BN = sup
1≤i≤N

|f(yi)− f(vi−1)| ≤ sup
1≤i≤N

|f(yi)− f(xi)|+ sup
1≤i≤N

|f(xi)− f(vi−1)|

= Op

(
(δ/∆)1/2T (ω2) log(T/δ)

)
+Op

(
∆1/2T (ω2)

√
log(T/∆)

)
by Lemmas A.2 and B.2.

Since y∗i ∈ [yi−k, yi+1], we have

AN ≤ sup
1≤i,j≤N

sup
|i−j|≤k

|f(yi)− f(yj)|

≤ sup
1≤i,j≤N

sup
|i−j|≤k

|f(vi)− f(vj)|+ 2 sup
1≤i≤N

|f(yi)− f(vi−1)|

≤ T (f ′)× sup
1≤i,j≤N

sup
|i−j|≤k

|Vi∆ − Vj∆|+ 2 sup
1≤i≤N

|f(yi)− f(vi−1)|

= Op

(
∆1/2T (f ′ω)

√
log(T/∆)

)
+ 2 sup

1≤i≤N
|f(yi)− f(vi−1)|,

where the last line follows from (A.2).

B.2. Without Leverage Effects

Now we let each of V and D is independent of W P .
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Lemma B.6. Let the condition (a) in Lemma B.1 hold. If (δ/∆)T 4
DT →p 0, then

(a)
N−1∑
i=1

f(vi−1)(xi+1 − xi)eai+1,

N−1∑
i=1

f(vi−1)(xi+1 − xi)eai

= Op

(√
δT (ω4)T log(T/∆)

)
,

(b)
N−1∑
i=1

f(vi−1)(xi+1 − xi)ebi+1,
N−1∑
i=1

f(vi−1)(xi+1 − xi)ebi

= Op

(√
(δ3/∆)1/2T (ω5)T 1/2 log(T/∆)

)
,

(c)
N−1∑
i=1

f(vi−1)(xi+1 − xi)eci ,
N−1∑
i=1

f(vi−1)(xi+1 − xi)eci+1

= Op

(√
(δ/∆)T (ω6)T log(T/∆) log(T/δ)

)
.

Proof of Lemma B.6 (a). We have

N−1∑
i=1

f(vi−1)(xi+1 − xi)eai+1,
N−1∑
i=1

f(vi−1)(xi+1 − xi)eai

≤ 2

∆

(
sup

1≤i≤N
|f(vi−1)eai |

)N−1∑
i=1

∫ (i+1)∆

i∆

|Vs − Vs−∆|ds

= Op

(
(δ/∆1/2)T 2

DT (fω)T
√

log(T/∆)
)

by (A.2) and (B.1). The stated result is then follows immediately under the conditions

in the lemma.

Proof of Lemma B.6 (b). We will only prove the result for
∑N−1

i=1 (xi+1 − xi)ebi , since

the proofs of the results for
∑N−1

i=1 f(vi−1)(xi+1−xi)ebi and
∑N−1

i=1 f(vi−1)(xi+1−xi)ebi+1

with a locally bounded f are entirely analogous.

We define a continuous process M as M0 = 0 and

Mt −M(i−1)∆+(j−1)δ

=

(∫ (i+1)∆

i∆

(Vs − Vs−∆)ds

)(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

Dsds

)(∫ t

(i−1)∆+(j−1)δ

V 1/2
s dW P

s

)
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for t ∈ [(i−1)∆ +(j−1)δ, (i−1)∆ + jδ) with i = 1, 2, · · · , N −1 and j = 1, 2, · · · , n.

Since each of D and W is independent of W P , Mt becomes a continuous martingale

with respect to the filteration Gt = FWP

t ∨ FW∞ ∨ FD∞, where (FZt ) is the natural

filteration of Z = W P ,W,D. The quadratic variation [M ] satisfies

[M ]T =
N−1∑
i=1

(∫ (i+1)∆

i∆

(Vs − Vs−∆)ds

)2

×

 n∑
j=1

(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

Dudu

)2(∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

Vsds

)
=Op

(
δ2∆3T 2

DT (ω3)T log(T/∆)
)

by (A.2). The stated result for
∑N−1

i=1 (xi+1−xi)ebi follows immediately since
∑N−1

i=1 (xi+1−
xi)e

b
i+1 = (1/∆2)MT , which completes the proof.

Proof of Lemma B.6 (c). We will only prove the result for
∑N−1

i=1 f(vi−1)(xi+1−xi)eci ,
since the proof of the result for

∑N−1
i=1 f(vi−1)(xi+1 − xi)eci+1 is entirely analogous.

We define a continuous process M as M0 = 0 and

Mt −M(i−1)∆+(j−1)δ =f(V(i−1)∆)

(∫ (i+1)∆

i∆

(Vs − Vs−∆)ds

)

×
(∫ t

(i−1)∆+(j−1)δ

(∫ s

(i−1)∆+(j−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s

)
for t ∈ [(i−1)∆ +(j−1)δ, (i−1)∆ + jδ) with i = 1, 2, · · · , N −1 and j = 1, 2, · · · , n.

Since W P is independent of W , Mt becomes a continuous martingale in a similar

argument to the proof of Lemma B.6 (b). The quadratic variation [M ] of M satisfies

[M ]T =
N−1∑
i=1

f 2(V(i−1)∆)

(∫ (i+1)∆

i∆

(Vs − Vs−∆)ds

)2

×

(
n∑
j=1

∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

(∫ s

(i−1)∆+(j−1)δ

V 1/2
u dW P

u

)2

Vsds

)
=Op

(
δ∆3T (f 2ω4)T log(T/∆) log(T/δ)

)
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due to (A.2) and (B.2). The stated result follows immediately since
∑N−1

i=1 f(vi−1)(xi+1−
xi)e

c
i = (2/∆2)MT , which completes the proof.

Lemma B.7. If (δ/∆)T (ω2)T log(T/δ)→ 0, then

N∑
i=1

f(vi−1)(eci)
2 =

2δ

∆2

∫ T

0

f(Vt)V
2
t dt+Op

(
(δ2/∆3)1/2T (ω3)T 1/2 log(T/δ)

)
.

Proof of Lemma B.7. Let M be the martingale defined in (B.4). Then, by Ito’s

lemma, we have

N∑
i=1

f(vi−1)(eci)
2 =

N∑
i=1

f(vi−1)(Mi∆ −M(i−1)∆)2

=
N∑
i=1

f(vi−1)

∫ i∆

(i−1)∆

d[M ]t + 2
N∑
i=1

f(vi−1)

∫ i∆

(i−1)∆

(Mt −M(i−1)∆)dMt.

To complete the proof, it suffice to show that

N∑
i=1

f(vi−1)

∫ i∆

(i−1)∆

d[M ]t =
2δ

∆2

∫ T

0

f(Vt)V
2
t dt+Op

(
(δ3/2/∆2)T (fω2)T log3/2(T/δ)

)
,

(B.6)

N∑
i=1

f(vi−1)

∫ i∆

(i−1)∆

(Mt −M(i−1)∆)dMt = Op

(
(δ/∆3/2)T (fω2)T 1/2 log(T/δ)

)
. (B.7)

since δT log(T/δ) = o(∆).

Below we prove (B.6) and (B.7) separately when f(v) = 1 for all v ∈ D since the

proof of the results for a locally bounded f is entirely analogous.

Proof of (B.6). Due to Ito’s lemma, we have

[M ]T =
4

∆2

nN∑
k=1

∫ kδ

(k−1)δ

(∫ t

(k−1)δ

V 1/2
s dW P

s

)2

Vtdt =
2δ

∆2

∫ T

0

V 2
t dt+ AT + 2BT + 2CT ,
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where

AT =
4

∆2

nN∑
k=1

∫ kδ

(k−1)δ

(∫ t

(k−1)δ

Vsds

)
Vtdt−

∫ T

0

V 2
t dt,

BT =
4

∆2

nN∑
k=1

∫ kδ

(k−1)δ

(∫ t

(k−1)δ

(∫ s

(k−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s

)
(Vt − V(k−1)δ)dt,

CT =
4

∆2

nN∑
k=1

V(k−1)δ

∫ iδ

(k−1)δ

(∫ t

(k−1)δ

(∫ s

(k−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s

)
dt.

For AT , we write AT = A1T + A2T − (1/2)A3T , where

A1T =
4

∆2

K∑
k=1

∫ kδ

(k−1)δ

(∫ t

(k−1)δ

(Vs − V(k−1)δ)ds

)
Vtdt,

A2T =
4

∆2

K∑
k=1

V(k−1)δ

∫ kδ

(k−1)δ

(∫ t

(k−1)δ

ds

)
(Vt − V(k−1)δ)dt,

A3T =
2δ

∆2

K∑
k=1

∫ kδ

(k−1)δ

(V 2
t − V 2

(k−1)δ)dt =
2δ

∆2

K∑
k=1

∫ kδ

(k−1)δ

(Vt + V(k−1)δ)(Vt − V(k−1)δ)dt.

By (A.2), we have

A1T , A2T , A3T = Op

(
(δ/∆)2T (µι)T

)
+Op

(
(δ3/2/∆2)T (σι)T

√
log(T/δ)

)
. (B.8)

As for BT , we successively apply Lemma A.1 to have

sup
1≤k≤nN

sup
(k−1)δ≤t≤kδ

∣∣∣∣∫ t

(k−1)δ

(∫ s

(k−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s

∣∣∣∣ = Op (δT (ι) log(T/δ)) ,

from which, jointly with (A.2), we have

BT = Op

(
(δ/∆)2T (µι)T log(T/δ)

)
+Op

(
(δ3/2/∆2)T (σι)T log3/2(T/δ)

)
. (B.9)
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Similar as in the proof of B.6 (c), we may show that

CT =
4

∆2

K∑
k=1

V(k−1)δ

∫ kδ

(k−1)δ

(kδ − s)
(∫ s

(k−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s

= Op

(
(δ3/2/∆2)T (ι2)

√
T log(T/δ)

)
. (B.10)

The stated result (B.6) follows immediately from (B.8)-(B.10).

Proof of (B.7). We define a continuous martingale M̃ as M̃ = 0 and

M̃t − M̃(i−1)∆

=

j−1∑
k=1

∫ (i−1)∆+kδ

(i−1)∆+(k−1)δ

(Ms −M(i−1)∆)dMs +

∫ t

(i−1)∆+(j−1)δ

(Ms −M(i−1)∆)dMs

for t ∈ [(i − 1)∆ + (j − 1)δ, (i − 1)∆ + jδ) with i = 1, 2, · · · , N and j = 1, 2, · · · , n,

so that

M̃T =
N∑
i=1

∫ i∆

(i−1)∆

(Mt −M(i−1)∆)dMt.

The quadratic variation [M̃ ] of M̃ satisfies

[M̃ ]T =
N∑
i=1

n∑
j=1

∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

(Mt −M(i−1)∆)2d[M ]t

≤ [M ]T

(
sup

1≤i≤N
sup

(i−1)∆≤t≤i∆
(Mt −M(i−1)∆)2

)
= Op

(
(δ/∆2)T (ι2)T

)
×Op

(
(δ/∆)T (ι2) log2(T/δ)

)
where the last equality follows from (B.6) and (B.5). This completes the proof of

(B.7).

Lemma B.8. Under the condition (a) in Lemma B.1, we have

N−1∑
i=1

f(vi−1)ecie
c
i+1 = Op

(√
(δ2/∆3)T (ω6)T log3(T/δ)

)

Proof of Lemma B.8. We define a continuous martingale M as Mt = 0 for 0 ≤ t < ∆,
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and

Mt −Mi∆+(j−1)δ =
2

∆
(f(vi−1)eci)

(∫ t

i∆+(j−1)δ

(∫ s

i∆+(j−1)δ

V 1/2
u dW P

u

)
V 1/2
s dW P

s

)
for t ∈ [i∆ + (j − 1)δ, i∆ + jδ) with i = 1, 2, · · · , N − 1 and j = 1, 2, · · · , n, so that

MT =
∑N−1

i=1 ecie
c
i+1. Then, the quadratic variation [M ] of M satisfies

[M ]T =
4

∆2

N−1∑
i=1

(f(vi−1)eci)
2

(
n∑
j=1

∫ i∆+jδ

i∆+(j−1)δ

(∫ s

i∆+(j−1)δ

V 1/2
u dW P

u

)2

Vtdt

)

≤
(

sup
1≤i≤N

(f(vi−1)eci)
2

)(
4

∆2

nN∑
i=1

∫ iδ

(i−1)δ

(∫ s

(i−1)δ

V 1/2
u dW P

u

)2

Vtdt

)
=Op

(
(δ2/∆3)T (f 2ι4)T log3(T/δ)

)
by (B.2) and (B.5). This completes the proof.

Lemma B.9. Under the conditions in Lemma B.6, we have

N−1∑
i=1

f(vi−1)(eai )
2,

N−1∑
i=1

f(vi−1)eai e
a
i+1 = Op (δT (ω)) ,

N−1∑
i=1

f(vi−1)(ebi)
2,

N−1∑
i=1

f(vi−1)ebie
b
i+1 = Op

(
(δ/∆)1/2T (ω2)T 1/2 log(T/δ)

)
,

and

N−1∑
i=1

f(vi−1)eai e
b
i ,

N−1∑
i=1

f(vi−1)eai e
b
i+1,

N−1∑
i=1

f(vi−1)ebie
a
i+1 = Op

(
(δ3/∆4)1/2T (ω2)

√
log(T/δ)

)
.

Proof of Lemma B.9. The stated results follow immediately from (B.1) with the con-

ditions in the lemma.

Lemma B.10. Under the conditions in Lemma B.6, we have

N−1∑
i=1

f(vi−1)eai e
c
i ,

N−1∑
i=1

f(vi−1)eai e
c
i+1,

N−1∑
i=1

f(vi−1)ecie
a
i+1

= Op

(
(δ/∆)T (ω2)T 1/2 log(T/δ)

)
.



59

Proof of Lemma B.10. The stated result follows from (B.1) and (B.5).

Lemma B.11. Under the conditions in Lemma B.6, we have

N∑
i=1

f(vi−1)ebie
c
i = Op

(√
(δ2/∆3)T (ω3)T log(T/δ)

)
+Op

(
(δ/∆)T (ω3/2) log(T/δ)

)
.

Proof of Lemma B.11. We will only prove the result for f(v) = 1 since the result for

a locally bounded f can be obtained similarly.

We define two continuous time processes M b and M c, as M c = M , where M is

defined in (B.4), and

M b
t −M b

(k−1)δ =
1

∆

(∫ kδ

(k−1)δ

Dtdt

)(∫ t

(k−1)δ

V 1/2
s dW P

s

)
for t ∈ [(k− 1)δ, kδ) with M b

0 = 0. Note that M b and M c are continuous martingales

since, in particular, D is independent of W P . Moreover, M b
i∆ −M b

(i−1)∆ = ebi and

M c
i∆ −M c

(i−1)∆ = eci . Then, by Ito’s lemma, we have

N∑
i=1

ebie
c
i =

N∑
i=1

(M b
i∆ −M b

(i−1)∆)(M c
i∆ −M c

(i−1)∆) = AT +BT + CT ,

where

AT =
1

∆2

nN∑
k=1

(∫ kδ

(k−1)δ

Dtdt

)(∫ kδ

(k−1)δ

(∫ t

(k−1)δ

V 1/2
s dW P

s

)
Vtdt

)
,

BT =
2

∆2

N∑
i=1

∫ i∆

(i−1)∆

(M c
t −M c

(i−1)∆)dM b
t ,

CT =
2

∆2

N∑
i=1

∫ i∆

(i−1)∆

(M b
t −M b

(i−1)∆)dM c
t .

By Lemma A.1, we have

AT = Op

(
(δ3/2/∆2)TDT (ι3/2)T

√
log(T/δ)

)
= Op

(√
(δ2/∆3)T (ω3)T log(T/δ)

)
(B.11)
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due to the condition (δ/∆)T 4
DT →p 0 in this lemma.

For BT , we define a continuous martingale M̃ b as M̃ b
0 = 0 and

M̃ b
t − M̃ b

(i−1)∆ =

∫ t

(i−1)∆

(M c
s −M c

(i−1)∆)dM b
s .

for t ∈ [(i − 1)∆, i∆) with i = 1, 2, · · · , N , so that M̃ b
T = BT . Then the quadratic

variation [M̃ b] of M̃ b satisfies

[M̃ b]T =
N∑
i=1

∫ i∆

(i−1)∆

(M c
t −M c

(i−1)∆)2d[M b]t,

≤ [M b]T

(
sup

1≤i≤N
sup

(i−1)∆≤t≤i∆
(M c

t −M c
(i−1)∆)2

)
= Op

(
(δ/∆)2T 2

DT (ι)T
)
×Op

(
(δ/∆)T (ι2) log2(T/δ)

)
, (B.12)

where the last line follows from (B.5) with the construction of M b. Similarly, we may

define a continuous martingale M̃ c such that M̃ c
T = CT and

[M̃ c]T =
N∑
i=1

∫ i∆

(i−1)∆

(M b
t −M b

(i−1)∆)2d[M c]t

= Op

(
(δ2/∆)T 2

DT (ι) log(T/δ)
)
×Op

(
(δ/∆2)T (ι2)T log(T/δ)

)
. (B.13)

It then follows from (B.12) and (B.13) that

BT , CT = Op

(
(δ/∆)3/2TDT (ι3/2)T 1/2 log(T/δ)

)
= Op

(
(δ/∆)T (ω3/2) log(T/δ)

)
(B.14)

by the condition (δ/∆)T 4
DT →p 0 in this lemma. The stated result follows from (B.11)

and (B.14).

Lemma B.12. Under the conditions in Lemma B.6, we have

N−1∑
i=1

f(vi−1)ebi+1e
c
i ,

N−1∑
i=1

f(vi−1)ebie
c
i+1 = Op

(
(δ/∆)T (ω3/2) log(T/δ)

)
.
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Proof of Lemma B.12. We will only prove the result for
∑N−1

i=1 f(vi−1)ebi+1e
c
i , since

the proof of the result for
∑N−1

i=1 f(vi−1)ebie
c
i+1 is entirely analogous.

Let M b and M c be the martingales defined in the proof of Lemma B.11. We define

a continuous martingale M̃ b as M̃ b
t = 0 for 0 ≤ t < ∆, and

M̃ b
t − M̃ b

i∆ = f(V(i−1)∆)(M c
i∆ −M c

(i−1)∆)(M b
t −M b

i∆)

for i = 1, 2, · · · , N − 1, so that
∑N−1

i=1 f(vi−1)ebi+1e
c
i = M̃ b

T . Then the quadratic

variation [M̃ b] of M̃ b satisfies

[M̃ b]T =
N−1∑
i=1

f 2(V(i−1)∆)(M c
i∆ −M c

(i−1)∆)2

∫ (i+1)∆

i∆

d[M b]t,

= Op

(
(δ/∆)2T 2

DT (ι)T
)
×Op

(
(δ/∆)T (ι2) log2(T/δ)

)
×Op(T (f 2))

similar as in (B.12), from which we have the stated result.

Lemma B.13. Let the conditions in Lemmas A.5 and B.6 hold. If δ/∆2 = O(1) and

(δ/∆)T (ω6)T log3(T/δ)→p 0, then for any k ≥ 0, we have

N−1∑
i=k+1

f(vi−k−1)(yi+1 − yi−k)2 =

(
2

3
+ k

)∫ T

0

f(Vt)σ
2(Vt)dt+

4δ

∆2

∫ T

0

f(Vt)V
2
t dt+ op(1).

Proof of Lemma B.13. We have

N−1∑
i=k+1

f(vi−k−1)(yi+1 − yi−k)2 −
N−1∑
i=k+1

f(vi−k−1)(xi+1 − xi−k)2

=
N−1∑
i=k+1

f(vi−k−1)(ei+1 − ei−k)2 + op(1)

=
N−1∑
i=k+1

f(vi−k−1)(eci+1 − eci−k)2 + op(1)

=
N−1∑
i=k+1

f(vi−k−1)(eci+1)2 +
N−1∑
i=k+1

f(vi−k−1)(eci−k)
2 + op(1)

where the first equality follows from Lemma B.6, the second equality holds due to
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Lemmas B.9-B.12, and the last equality follows from Lemma B.8. Then the stated

result can be deduced from Lemmas A.5 and B.7.

Lemma B.14. Let the conditions in Lemma B.13 hold. Then we have

N−1∑
i=k+1

|f(y∗i−k)− f(vi−k−1)|(yi+1 − yi−k)2

= Op

(
(δ/∆)1/2T (ω4)T log(T/δ)

)
+Op

(
∆1/2T (ω4)T

√
log(T/∆)

)
.

Proof of Lemma B.14. The stated result follows immediately from Lemmas B.5 and

B.13.

C. Proofs of Main Results

Proof of Lemma 2.1. The stochastic differential equation (2.7) has a solution

Vt = V0e
σWt−(κ+σ2/2)t + κµ

∫ t

0

eσ(Wt−Ws)−(κ+σ2/2)(t−s)ds.

Since Vt is an homogeneous Markov process, we have

E[Vt+∆|Vt] = f∆(Vt), with f∆(V0) = E[V∆|V0].

Note that f∆ is well defined since the distribution of Wt is exponentially decaying.

Moreover, it follows from E[exp(cWt)] = exp(u2t/2) for all c ∈ R that

f∆(V0) = µ+ exp(−κ∆)(V0 − µ),

from which we have the desired result.

Proof of Proposition 2.2 (a). Define Ut(∆) = (Vt+∆ − µ) − exp(−κ∆)(Vt − µ) for

t,∆ > 0. It then follows from Lemma 2.1 that

E(Ut(∆)|FWs ) = E(Ut(∆)|Vs) = 0 for all s ≤ t, (C.1)

where (FWt ) is the natural filteration of (Wt), since Vt is an homogeneous Markov
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process. This completes the proof of the result for z = v.

As for the case z = x, we define ui+1 = 1
∆

∫ i∆
(i−1)∆

Ut(∆)dt for i = 1, 2, · · · , N so

that ui+1 = (xi+1 − µ)− exp(−κ∆)(xi − µ). It then follows from (C.1) that

E(ui+1|FW(i−1)∆) =
1

∆

∫ i∆

(i−1)∆

E(Ut(∆)|FW(i−1)∆)dt = 0,

from which we have the result for z = x since the sigma-field generated by xi−1 =

(1/∆)
∫ (i−1)∆

(i−2)∆
Vtdt is a subset of FW(i−1)∆ for all i = 1, 2, · · · .

Proof of Proposition 2.2 (b). Under the conditions in the proposition, we have yi −
xi = ei, where

ei =

∫ (i−1)∆+jδ

(i−1)∆+(j−1)δ

(∫ t

(i−1)∆+(j−1)δ

V 1/2
s dW P

s

)
V

1/2
t dW P

t

Let (Ft) be a filteration such that both (Wt) and (W P
t ) are adapted. Clearly, (ei) is

a m.d.s. with respect to (Fi∆) satisfying E(ei|Fj∆) = 0 for all j ≤ i − 1. Therefore,

we have

E(ei+1|yi−1) = E(ei|yi−1) = 0

since the sigma-field generated by yi−1 is a subset of F(i−1)∆ for all i = 1, 2, · · · . The

stated result is then follows immediately from Part (a) of this proposition.

Proof of Corollary 2.3. The stated result follows from Proposition 2.2.

Proofs of Lemma 3.1 (a) and Proposition 4.1 (a). The stated results for (vi) and (xi)

can be deduced from Lemmas A.2-A.3 and (A.2) with Assumptions 3.1-3.2. On the

other hand, the results for (yi) can be deduced from Lemmas A.2-A.3, (A.2) and

Lemma B.2 with Assumptions 3.1-3.5.

Proofs of Lemma 3.1 (b) and Proposition 4.1 (b). The stated results for (vi) and (xi)

can be deduced from Lemmas A.5, A.7 and A.8 with Assumptions 3.1-3.2. The result

for (yi) can be obtained immediately from the result for (xi) with Lemmas B.13-B.14

under Assumptions 3.1-3.5.
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Proofs of Proposition 3.2 and Proposition 4.1 (c). Due to Ito’s lemma, Proposition

3.2 follows immediately from Lemma 3.1. Similarly, we can obtain Proposition 4.1

(c) from Proposition 4.1 (a)-(b).

Proofs of Lemma 3.3, Theorem 3.4 and Theorem 4.2. The asymptotics in Theorem

3.4 can be obtained by applying Lemma 3.3 to the continuous time approximations

in Proposition 3.2. Moreover, Lemma 3.3 follows immediately from Lemma 3.2 of

Kim and Park (2018). Similarly, we can obtain Theorem 4.2 from Proposition 4.1

and Ito’s lemma under, in particular, Assumption 4.2.

Proof of Corollary 4.3. It can be shown that the scale density s′ of the linear drift

diffusion (4.3) defined on (0,∞) satisfies s′(v)→∞ as v →∞ under the stationarity

and the condition σ2(v)/v2 = O(1) as v → ∞. Moreover, a stationary diffusion

defined on (0,∞) also satisfies s′(v) → ∞ as v → 0 due to Lemma A6 of Kim and

Park (2018).

For any vl, vu ∈ (0,∞), we have

−2

∫ vu

vl

(mµr)(v)dv =

∫ vl

vu

(mσ2r′)(v)dv − [(r/s′)(vu)− (r/s′)(vl)]

by the integration by parts, and therefore, we have

−2

∫ ∞
0

(mµr)(v)dv =

∫ ∞
0

(mσ2r′)(v)dv

since r is bounded, and s′(v) → ∞ as v → vB for vB = 0,∞. This completes the

proof since π(v) = m(v)/
∫
Dm(v)dv.

Proof of Theorem 4.4. Due to (4.6), the stated results follow immediately if we show

N−1∑
i=k+2

r(zi−k−1)(zi−k − zN)∆ =
N−1∑
i=k+2

r(zi−k−1)(zi−k−1 − zN)∆ + op(1). (C.2)
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But it follows from Taylor expansion that

N−1∑
i=k+2

r(zi−k−1)(zi−k − zi−k−1)∆

= −∆

2

N−1∑
i=k+2

r′(z∗i−k−1)(zi−k − zi−k−1)2 + ∆(r1(zN−k−1)− r1(z1))

= Op

(
∆T (ω3)

)
+Op (∆)

where the last equality follows from Proposition 4.1 (b) and the stationarity of V .

Therefore, we have (C.2) under Assumption 3.2, from which, jointly with Proposition

4.1, we have the desired result.

Proof of Proposition 5.1. It follows from Lemmas A.7, B.4 and B.5 with Assumptions

3.2, 4.1 and 5.1 that

N−1∑
i=k+1

r′(y∗i−k)(yi+1 − yi−k)2 =
N−1∑
i=k+1

r′(vi−k−1)(xi+1 − xi−k)2 (1 + op(1)) ,

from which, together with Lemmas A.8 and B.2, we have the stated result.

Proof of Theorem 5.2. This follows immediately from Corollary 2.3.
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Fig. 1. Tail index of returns and volatility measures. The figures depict the
Hill estimator of the tail index of the SPDR S&P 500 ETF (SPY), from June 15,
2004 through June 13, 2014. The first panel depicts the tail index of the daily return
(open-to-close). The second panel depicts the tail index of the realized volatility, the
bipower variation and the threshold volatility measure.
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Fig. 2. Tail index of returns and realized volatility over sub-periods. The
figures depict the Hill estimator of the tail index of the SPDR S&P 500 ETF (SPY).
The full period is divided in three sub-periods: Before Crisis (June 15, 2004 through
August 29, 2008), During Crisis (September 2, 2008 through May 29, 2009) and After
Crisis (June 1, 2009 through June 13, 2014). The first panel depicts the tail index of
the daily return (open-to-close) for the three periods. The second panel depicts the
tail index of the realized volatility for the three periods.
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Fig. 3. Tail index of bipower and threshold volatility measures over sub-
periods. The figures depict the Hill estimator of the tail index of the SPDR S&P
500 ETF (SPY). The full period is divided in three sub-periods: Before Crisis (June
15, 2004 through August 29, 2008), During Crisis (September 2, 2008 through May
29, 2009) and After Crisis (June 1, 2009 through June 13, 2014). The first panel
depicts the tail index of the bipower volatility measure (open-to-close) for the three
periods. The second panel depicts the tail index of the threshold volatility measure
for the three periods.
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Fig. 4. Tail index of returns, spot and integrated volatilities of
the GARCH diffusion model. The figures depict the average estimator of
the tail index over 10,000 simulations of sample of 1,000 observations of the
GARCH diffusion model. Three designs are considered: Model 1 corresponds to
(κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207), while Models 2 and 3 correspond respectively

to (0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312). The first panel depicts the
tail index of daily returns; the second panel depicts the tail index of the daily spot
volatility while the third one depicts the tail of the daily integrated volatility.
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Fig. 5. Tail index of realized volatility measures of the GARCH diffu-
sion model. The figures depict the average estimator of the tail index over 10,000
simulations of sample of 1,000 observations of the GARCH diffusion model. Three
designs are considered: Model 1 corresponds to (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207),

while Models 2 and 3 correspond respectively to (0.0350, 0.6360, 0.0828) and
(0.0350, 0.6360, 0.3312). The three panels depict the tail index of daily realized volatil-
ity with different frequencies: Panel 1 with 10 minute-returns RV; Panel 2 with 5
minute-returns RV; Panel 3 with 1 minute-returns RV.
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Fig. 6. Autoregression estimation for spot volatility. The figures depict the
empirical distribution of the OLS and IV estimators of the autoregression of order one
of daily spot volatility of the GARCH diffusion model. The figures are based on 10,000
simulations for three different sample sizes (250, 500 and 1,000). The instrument is the
sign of the demeaned lagged value of the spot volatility. The first panel corresponds
to Model 1 with (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207), while the second and their

panels are for Models 2 and 3 that correspond respectively to (0.0350, 0.6360, 0.0828)
and (0.0350, 0.6360, 0.3312).
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Fig. 7. Multiperiod moment restriction for spot volatility. The figures depict
the empirical distribution of two IV estimators of the multiperiod-moment restric-
tions of the spot volatility of the GARCH diffusion model. The figures are based
on 10,000 simulations for three different sample sizes (250, 500 and 1,000). The
first instrument is the two lags of spot volatility while the second instrument is the
sign of the demeaned value of the first instrument. The first panel corresponds to
Model 1 with (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207), while the second and their panels

are for Models 2 and 3 that correspond respectively to (0.0350, 0.6360, 0.0828) and
(0.0350, 0.6360, 0.3312).
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Fig. 8. Multiperiod moment restriction for integrated volatility. The figures
depict the empirical distribution of two IV estimators of the multiperiod-moment
restrictions of the integrated volatility of the GARCH diffusion model. The figures are
based on 10,000 simulations for three different sample sizes (250, 500 and 1,000). The
first instrument is the two lags of the integrated volatility while the second instrument
is the sign of the demeaned value of the first instrument. The first panel corresponds
to Model 1 with (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207), while the second and their

panels are for Models 2 and 3 that correspond respectively to (0.0350, 0.6360, 0.0828)
and (0.0350, 0.6360, 0.3312).
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Fig. 9. Multiperiod moment restriction for 10-minutes realized volatility.
The figures depict the empirical distribution of two IV estimators of the multiperiod-
moment restrictions of the 10 minutes realized volatility of the GARCH diffusion
model. The figures are based on 10,000 simulations for three different sample sizes
(250, 500 and 1,000). The first instrument is the two lags of the 10 minutes re-
alized volatility while the second instrument is the sign of the demeaned value of
the first instrument. The first panel corresponds to Model 1 with (κ0, µ0, σ

2
0) =

(0.0350, 0.6360, 0.0207), while the second and their panels are for Models 2 and 3
that correspond respectively to (0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312).
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Fig. 10. Multiperiod moment restriction for 5-minutes realized volatility.
The figures depict the empirical distribution of two IV estimators of the multiperiod-
moment restrictions of the 5 minutes realized volatility of the GARCH diffusion model.
The figures are based on 10,000 simulations for three different sample sizes (250, 500
and 1,000). The first instrument is the two lags of the 5 minutes realized volatility
while the second instrument is the sign of the demeaned value of the first instrument.
The first panel corresponds to Model 1 with (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207),

while the second and their panels are for Models 2 and 3 that correspond respectively
to (0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312).
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Fig. 11. Multiperiod moment restriction for 1-minute realized volatility.
The figures depict the empirical distribution of two IV estimators of the multiperiod-
moment restrictions of the 1 minutes realized volatility of the GARCH diffusion model.
The figures are based on 10,000 simulations for three different sample sizes (250, 500
and 1,000). The first instrument is the two lags of the 1 minutes realized volatility
while the second instrument is the sign of the demeaned value of the first instrument.
The first panel corresponds to Model 1 with (κ0, µ0, σ

2
0) = (0.0350, 0.6360, 0.0207),

while the second and their panels are for Models 2 and 3 that correspond respectively
to (0.0350, 0.6360, 0.0828) and (0.0350, 0.6360, 0.3312).


	Introduction
	Model and Preliminaries
	Spot, Integrated and Realized Variances
	Population Regressions with GARCH Diffusions
	GARCH Diffusions with E(Vt2)<
	GARCH Diffusions with E(Vt)<

	Empirical Evidences of Fat Tails

	Least Square Estimates
	Primary Asymptotics
	Long Span Asymptotics

	Instrumental Variable Estimations
	IV Estimator z(k) with a Current Instrument
	IV Estimator z(k) with a Lagged Instrument

	Extensions
	Asymptotic Negligibility of Errors in Realized Variance
	Fixed  Asymptotics for GARCH Diffusion

	Simulations
	Tail Index
	OLS and IV Estimations

	Conclusion
	Useful Lemmas for Integrated Variance
	Useful Lemmas for Realized Variance
	With Leverage Effects
	Without Leverage Effects

	Proofs of Main Results

